Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 43

Question Number 167213    Answers: 1   Comments: 0

solve I= ∫_0 ^( (1/2)) ((ln^( 2) (x))/(1−x)) dx =?

solveI=012ln2(x)1xdx=?

Question Number 167173    Answers: 1   Comments: 0

∫_(−2) ^(−1) e^(−(t/2)) (√(t+2)) dt = ???

21et2t+2dt=???

Question Number 167150    Answers: 1   Comments: 0

Question Number 167115    Answers: 0   Comments: 0

Question Number 167102    Answers: 0   Comments: 0

Ω = ∫_0 ^( 1) ((Li_( 2) (1− x ))/(1+x)) dx = ? −−−−−

Ω=01Li2(1x)1+xdx=?

Question Number 167092    Answers: 0   Comments: 0

Question Number 167082    Answers: 1   Comments: 1

Question Number 167048    Answers: 1   Comments: 0

prove that Φ= ∫_0 ^( 1) x.ψ (2+x )= 2 −(1/2)ln(8π) −−−

provethatΦ=01x.ψ(2+x)=212ln(8π)

Question Number 167040    Answers: 0   Comments: 1

∫_0 ^( (π/2)) (1/(1+sin^6 x)) dx=?

0π211+sin6xdx=?

Question Number 167025    Answers: 0   Comments: 0

∫_0 ^(π/3) (√(1−(1/(3 ))sin^2 θ)) dθ

0π3113sin2θdθ

Question Number 167024    Answers: 1   Comments: 0

∫sec θtan^4 θdθ

secθtan4θdθ

Question Number 167006    Answers: 1   Comments: 0

∫ ((3x^3 )/((x−1)^3 )) dx=?

3x3(x1)3dx=?

Question Number 166959    Answers: 1   Comments: 0

γ=∫ ((e^x (sin x+1))/(cos x+1)) dx =?

γ=ex(sinx+1)cosx+1dx=?

Question Number 166956    Answers: 1   Comments: 0

calculate ∫_0 ^( ∞) (((√x) arctan(x))/(1+x^( 2) ))dx =?

calculate0xarctan(x)1+x2dx=?

Question Number 166940    Answers: 1   Comments: 0

Question Number 166939    Answers: 1   Comments: 0

Question Number 166916    Answers: 0   Comments: 0

Ω= Σ_(n=1) ^∞ (( H_( n) )/(n(n+1))) = −−−−−− Ω = Σ_(n=1) ^∞ −(1/(n+1)) ∫_(0 ) ^( 1) x^( n−1) ln(1−x )dx = ∫_0 ^( 1) {−(1/x^2 )ln(1−x).Σ_(n=1) (x^( n+1) /(n+1))}dx = ∫_0 ^( 1) {((−ln(1−x))/x^( 2) )Σ_(n=2) ^∞ (x^( n) /n)}dx = ∫_0 ^( 1) ((−ln(1−x))/x^( 2) ) {−x +Σ_(n=1) ^∞ (x^( n) /n) }dx = −li_( 2) ( 1) +[ ∫_0 ^( 1) ((ln^( 2) ( 1−x ))/x^( 2) )dx=_(derived) ^(earlier) (π^( 2) /3) ] = −(π^( 2) /6) + (π^( 2) /3) = (( π^( 2) )/6) = ζ (2) ■ m.n

Ω=n=1Hnn(n+1)=Ω=n=11n+101xn1ln(1x)dx=01{1x2ln(1x).n=1xn+1n+1}dx=01{ln(1x)x2n=2xnn}dx=01ln(1x)x2{x+n=1xnn}dx=li2(1)+[01ln2(1x)x2dx=earlierderivedπ23]=π26+π23=π26=ζ(2)m.n

Question Number 166829    Answers: 1   Comments: 0

calculate If , f(x)=(( (x^2 +1)(((x^( 2) +x−2)(x^( 4) −1)(x^( 2) +2x−3)+16))^(1/3) + (√(x^( 2) +3)))/(( 1+x +x^( 2) ))) then , f ′ (1 ) =? ■ m.n

calculateIf,f(x)=(x2+1)(x2+x2)(x41)(x2+2x3)+163+x2+3(1+x+x2)then,f(1)=?m.n

Question Number 166892    Answers: 2   Comments: 0

solve in R i: ⌊ x ⌊ x⌋⌋= 3x ii : ⌊x ⌋^( 2) −3 ⌊x ⌋ +2 ≤ 0 −−−−−−

solveinRi:xx=3xii:x23x+20

Question Number 166796    Answers: 1   Comments: 0

∫ ((sin^3 x)/((cos^2 x+1)(√(cos^2 x+1)))) dx

sin3x(cos2x+1)cos2x+1dx

Question Number 166725    Answers: 2   Comments: 2

∫ (dx/(3+tan x))=?

dx3+tanx=?

Question Number 166723    Answers: 1   Comments: 0

∫ (((x)^(1/5) −1)/( (√x) + 1)) dx=?

x51x+1dx=?

Question Number 166707    Answers: 1   Comments: 0

(8/(1×5×9))+(8/(5×9×13))+(8/(9×13×17))+…+(1/(41×45×49))=? by M.A

81×5×9+85×9×13+89×13×17++141×45×49=?byM.A

Question Number 166702    Answers: 0   Comments: 1

∫e^x ln(x)dx=..???

exln(x)dx=..???

Question Number 166684    Answers: 0   Comments: 0

T = ∫ ((sin (x^2 +2))/(2x+4)) dx=?

T=sin(x2+2)2x+4dx=?

Question Number 166660    Answers: 1   Comments: 0

calculate Ω = Σ_(n=0) ^∞ (1/((3n)!)) = ?

calculateΩ=n=01(3n)!=?

  Pg 38      Pg 39      Pg 40      Pg 41      Pg 42      Pg 43      Pg 44      Pg 45      Pg 46      Pg 47   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com