Question and Answers Forum |
IntegrationQuestion and Answers: Page 44 |
Ω= Σ_(n=1) ^∞ (( H_( n) )/(n(n+1))) = −−−−−− Ω = Σ_(n=1) ^∞ −(1/(n+1)) ∫_(0 ) ^( 1) x^( n−1) ln(1−x )dx = ∫_0 ^( 1) {−(1/x^2 )ln(1−x).Σ_(n=1) (x^( n+1) /(n+1))}dx = ∫_0 ^( 1) {((−ln(1−x))/x^( 2) )Σ_(n=2) ^∞ (x^( n) /n)}dx = ∫_0 ^( 1) ((−ln(1−x))/x^( 2) ) {−x +Σ_(n=1) ^∞ (x^( n) /n) }dx = −li_( 2) ( 1) +[ ∫_0 ^( 1) ((ln^( 2) ( 1−x ))/x^( 2) )dx=_(derived) ^(earlier) (π^( 2) /3) ] = −(π^( 2) /6) + (π^( 2) /3) = (( π^( 2) )/6) = ζ (2) ■ m.n |
calculate If , f(x)=(( (x^2 +1)(((x^( 2) +x−2)(x^( 4) −1)(x^( 2) +2x−3)+16))^(1/3) + (√(x^( 2) +3)))/(( 1+x +x^( 2) ))) then , f ′ (1 ) =? ■ m.n |
solve in R i: ⌊ x ⌊ x⌋⌋= 3x ii : ⌊x ⌋^( 2) −3 ⌊x ⌋ +2 ≤ 0 −−−−−− |
∫ ((sin^3 x)/((cos^2 x+1)(√(cos^2 x+1)))) dx |
∫ (dx/(3+tan x))=? |
∫ (((x)^(1/5) −1)/( (√x) + 1)) dx=? |
(8/(1×5×9))+(8/(5×9×13))+(8/(9×13×17))+…+(1/(41×45×49))=? by M.A |
∫e^x ln(x)dx=..??? |
T = ∫ ((sin (x^2 +2))/(2x+4)) dx=? |
calculate Ω = Σ_(n=0) ^∞ (1/((3n)!)) = ? |
![]() |
calculate:: ∫_0 ^∞ (({x}^2 (1−{x})^2 )/((1+x)^5 ))=(7/(12))−γ |
∫ ((x^2 +3)/(x^4 +5x^2 +9)) dx ? |
![]() |
∫_(−∞) ^∞ sin ((1/2)πx(x+1)) cos (πx^2 ) dx=? |
∫_(−∞) ^∞ cos ((1/2)πx(x+1)) sin (πx^2 ) dx =? |
![]() |
B=∫ (√((sin 2x−1)/(cos 2x−1))) dx =? |
![]() |
C = ∫ ((1−tan^2 x)/(1+sec^2 x)) dx =? |
Show that : Σ_(n=1) ^∞ (((−1)^( n) H_( n) )/n^( 2) ) = −(5/8) ζ (3 ) ■ m.n −−−−−−−−− |
![]() |
prove 𝛗=∫_0 ^( 1) (( ln^( 2) (1−x^( 2) ) )/x^( 2) ) dx =(π^( 2) /3) −4ln^( 2) (2) −−− solution (technical method) −−− 𝛗= ∫_0 ^( 1) ln^( 2) (1−x^( 2) )d(1−(1/x)) = [(1−(1/x))ln^( 2) (1−x^( 2) )]_0 ^1 +4∫_0 ^( 1) (1−(1/x))((xln(1−x^( 2) ))/(1−x^( 2) ))dx = −4∫_0 ^( 1) ((ln(1−x^( 2) ))/(1+x)) dx = −4∫_0 ^( 1) ((ln(1+x))/(1+x))dx −4∫_0 ^( 1) ((ln(1−x)dx)/(1+x)) = −2ln^( 2) (2) −4 ( −(π^( 2) /(12)) +(1/2)ln^( 2) (2)) ∴ 𝛗= (π^( 2) /3) −4ln^( 2) (2) ■ m.n |
∫ (dx/(tan^2 x+sin^2 x)) =? |
∫_0 ^1 ((x^4 (1−x)^4 )/(1+x^2 ))dx |
∫_( −(π/4)) ^( (π/4)) (dx/(cos^2 x (√(9+7 tan ∣x∣)))) dx =? |