Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 44

Question Number 166916    Answers: 0   Comments: 0

Ω= Σ_(n=1) ^∞ (( H_( n) )/(n(n+1))) = −−−−−− Ω = Σ_(n=1) ^∞ −(1/(n+1)) ∫_(0 ) ^( 1) x^( n−1) ln(1−x )dx = ∫_0 ^( 1) {−(1/x^2 )ln(1−x).Σ_(n=1) (x^( n+1) /(n+1))}dx = ∫_0 ^( 1) {((−ln(1−x))/x^( 2) )Σ_(n=2) ^∞ (x^( n) /n)}dx = ∫_0 ^( 1) ((−ln(1−x))/x^( 2) ) {−x +Σ_(n=1) ^∞ (x^( n) /n) }dx = −li_( 2) ( 1) +[ ∫_0 ^( 1) ((ln^( 2) ( 1−x ))/x^( 2) )dx=_(derived) ^(earlier) (π^( 2) /3) ] = −(π^( 2) /6) + (π^( 2) /3) = (( π^( 2) )/6) = ζ (2) ■ m.n

Ω=n=1Hnn(n+1)=Ω=n=11n+101xn1ln(1x)dx=01{1x2ln(1x).n=1xn+1n+1}dx=01{ln(1x)x2n=2xnn}dx=01ln(1x)x2{x+n=1xnn}dx=li2(1)+[01ln2(1x)x2dx=earlierderivedπ23]=π26+π23=π26=ζ(2)m.n

Question Number 166829    Answers: 1   Comments: 0

calculate If , f(x)=(( (x^2 +1)(((x^( 2) +x−2)(x^( 4) −1)(x^( 2) +2x−3)+16))^(1/3) + (√(x^( 2) +3)))/(( 1+x +x^( 2) ))) then , f ′ (1 ) =? ■ m.n

calculateIf,f(x)=(x2+1)(x2+x2)(x41)(x2+2x3)+163+x2+3(1+x+x2)then,f(1)=?m.n

Question Number 166892    Answers: 2   Comments: 0

solve in R i: ⌊ x ⌊ x⌋⌋= 3x ii : ⌊x ⌋^( 2) −3 ⌊x ⌋ +2 ≤ 0 −−−−−−

solveinRi:xx=3xii:x23x+20

Question Number 166796    Answers: 1   Comments: 0

∫ ((sin^3 x)/((cos^2 x+1)(√(cos^2 x+1)))) dx

sin3x(cos2x+1)cos2x+1dx

Question Number 166725    Answers: 2   Comments: 2

∫ (dx/(3+tan x))=?

dx3+tanx=?

Question Number 166723    Answers: 1   Comments: 0

∫ (((x)^(1/5) −1)/( (√x) + 1)) dx=?

x51x+1dx=?

Question Number 166707    Answers: 1   Comments: 0

(8/(1×5×9))+(8/(5×9×13))+(8/(9×13×17))+…+(1/(41×45×49))=? by M.A

81×5×9+85×9×13+89×13×17++141×45×49=?byM.A

Question Number 166702    Answers: 0   Comments: 1

∫e^x ln(x)dx=..???

exln(x)dx=..???

Question Number 166684    Answers: 0   Comments: 0

T = ∫ ((sin (x^2 +2))/(2x+4)) dx=?

T=sin(x2+2)2x+4dx=?

Question Number 166660    Answers: 1   Comments: 0

calculate Ω = Σ_(n=0) ^∞ (1/((3n)!)) = ?

calculateΩ=n=01(3n)!=?

Question Number 166653    Answers: 0   Comments: 0

Question Number 166614    Answers: 0   Comments: 0

calculate:: ∫_0 ^∞ (({x}^2 (1−{x})^2 )/((1+x)^5 ))=(7/(12))−γ

calculate::0{x}2(1{x})2(1+x)5=712γ

Question Number 166610    Answers: 1   Comments: 1

∫ ((x^2 +3)/(x^4 +5x^2 +9)) dx ?

x2+3x4+5x2+9dx?

Question Number 166570    Answers: 1   Comments: 0

Question Number 166554    Answers: 0   Comments: 0

∫_(−∞) ^∞ sin ((1/2)πx(x+1)) cos (πx^2 ) dx=?

sin(12πx(x+1))cos(πx2)dx=?

Question Number 166552    Answers: 0   Comments: 0

∫_(−∞) ^∞ cos ((1/2)πx(x+1)) sin (πx^2 ) dx =?

cos(12πx(x+1))sin(πx2)dx=?

Question Number 166491    Answers: 0   Comments: 4

Question Number 166488    Answers: 1   Comments: 0

B=∫ (√((sin 2x−1)/(cos 2x−1))) dx =?

B=sin2x1cos2x1dx=?

Question Number 166480    Answers: 0   Comments: 0

Question Number 166449    Answers: 1   Comments: 3

C = ∫ ((1−tan^2 x)/(1+sec^2 x)) dx =?

C=1tan2x1+sec2xdx=?

Question Number 166436    Answers: 2   Comments: 0

Show that : Σ_(n=1) ^∞ (((−1)^( n) H_( n) )/n^( 2) ) = −(5/8) ζ (3 ) ■ m.n −−−−−−−−−

Showthat:n=1(1)nHnn2=58ζ(3)m.n

Question Number 166376    Answers: 0   Comments: 0

Question Number 166373    Answers: 0   Comments: 0

prove 𝛗=∫_0 ^( 1) (( ln^( 2) (1−x^( 2) ) )/x^( 2) ) dx =(π^( 2) /3) −4ln^( 2) (2) −−− solution (technical method) −−− 𝛗= ∫_0 ^( 1) ln^( 2) (1−x^( 2) )d(1−(1/x)) = [(1−(1/x))ln^( 2) (1−x^( 2) )]_0 ^1 +4∫_0 ^( 1) (1−(1/x))((xln(1−x^( 2) ))/(1−x^( 2) ))dx = −4∫_0 ^( 1) ((ln(1−x^( 2) ))/(1+x)) dx = −4∫_0 ^( 1) ((ln(1+x))/(1+x))dx −4∫_0 ^( 1) ((ln(1−x)dx)/(1+x)) = −2ln^( 2) (2) −4 ( −(π^( 2) /(12)) +(1/2)ln^( 2) (2)) ∴ 𝛗= (π^( 2) /3) −4ln^( 2) (2) ■ m.n

proveϕ=01ln2(1x2)x2dx=π234ln2(2)solution(technicalmethod)ϕ=01ln2(1x2)d(11x)=[(11x)ln2(1x2)]01+401(11x)xln(1x2)1x2dx=401ln(1x2)1+xdx=401ln(1+x)1+xdx401ln(1x)dx1+x=2ln2(2)4(π212+12ln2(2))ϕ=π234ln2(2)m.n

Question Number 166320    Answers: 1   Comments: 0

∫ (dx/(tan^2 x+sin^2 x)) =?

dxtan2x+sin2x=?

Question Number 166307    Answers: 1   Comments: 0

∫_0 ^1 ((x^4 (1−x)^4 )/(1+x^2 ))dx

01x4(1x)41+x2dx

Question Number 166263    Answers: 1   Comments: 0

∫_( −(π/4)) ^( (π/4)) (dx/(cos^2 x (√(9+7 tan ∣x∣)))) dx =?

π4π4dxcos2x9+7tanxdx=?

  Pg 39      Pg 40      Pg 41      Pg 42      Pg 43      Pg 44      Pg 45      Pg 46      Pg 47      Pg 48   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com