Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 45

Question Number 165787    Answers: 2   Comments: 0

find ∫cos^3 x dx ?

findcos3xdx?

Question Number 165757    Answers: 1   Comments: 0

Question Number 165742    Answers: 0   Comments: 0

prove that Σ_(n=0) ^∞ (((2n)!)/((n!)^2 4^n (2n+1)^4 ))=^? (π/(96))(12𝛇(3)+8ln^3 (2)+2π^2 ln(2)) −−−−−−−−by M.A

provethatn=0(2n)!(n!)24n(2n+1)4=?π96(12ζ(3)+8ln3(2)+2π2ln(2))byM.A

Question Number 165741    Answers: 2   Comments: 0

∫_0 ^π (dt/(1−sina.cost))=??? , a∈]0,(π/2)[

0πdt1sina.cost=???,a]0,π2[

Question Number 165685    Answers: 2   Comments: 0

_0 ∫^2 ∣ x^2 −2x+1 ∣ dx =?

02x22x+1dx=?

Question Number 165615    Answers: 1   Comments: 0

∫_( 0) ^( 1) (dx/( (√x) ((x)^(1/3) +(x)^(1/4) )))=?

01dxx(x3+x4)=?

Question Number 165574    Answers: 0   Comments: 0

Question Number 165568    Answers: 0   Comments: 0

Question Number 165550    Answers: 1   Comments: 0

Question Number 165426    Answers: 0   Comments: 1

prove that ζ (0 )= ((−1)/2)

provethatζ(0)=12

Question Number 165418    Answers: 0   Comments: 0

prove that : 1^∗ : Σ_(n=1) ^∞ (( ζ (2n )−1)/( 1+ n)) = (3/(2 )) − ln (π ) 2^( ∗∗) : Σ_(n=2) ^∞ (( (−1)^( n) ( ζ (n )−1 ))/(1 + n))=(3/2) +(γ/2) −((ln(8π))/2) 3^( ∗∗) : Σ_(n=1) ^∞ (( ζ (2n )−1)/(1+ 2n)) = (3/2) −((ln(4π))/2) −−−− m.n −−−−

provethat:1:n=1ζ(2n)11+n=32ln(π)2:n=2(1)n(ζ(n)1)1+n=32+γ2ln(8π)23:n=1ζ(2n)11+2n=32ln(4π)2m.n

Question Number 165380    Answers: 1   Comments: 0

∫_0 ^( (π/2)) (( x^( 3) )/(sin^( 2) (x)))dx=^? (3/8) (π^( 2) ln(4)−7ζ(3))

0π2x3sin2(x)dx=?38(π2ln(4)7ζ(3))

Question Number 165354    Answers: 0   Comments: 0

Question Number 165339    Answers: 1   Comments: 0

# Advanced Calculus # Let , f : R → Q is a continuous function . prove that ” f ” is a constant function . ■ m.n ∗ Adopted from mathematical analysis book ∗ −−−−−−−−−−−−−−

You can't use 'macro parameter character #' in math modeLet,f:RQisacontinuousfunction.provethatfisaconstantfunction.m.nAdoptedfrommathematicalanalysisbook

Question Number 165329    Answers: 2   Comments: 0

prove ( n∈ N ) 3(n+1) ∣ n^( 3) + (n+1)^( 3) + (n+2 )^( 3)

prove(nN)3(n+1)n3+(n+1)3+(n+2)3

Question Number 165320    Answers: 1   Comments: 0

Ω = ∫_0 ^( (π/4)) cos (2x ).e^( ⌊ sin(x)+ cos(x) ⌋) dx ⌊ x ⌋= max { m ∈ Z ∣ m ≤ x } −−−−

Ω=0π4cos(2x).esin(x)+cos(x)dxx=max{mZmx}

Question Number 165255    Answers: 1   Comments: 0

nice integral ∫_0 ^1 (1/x)ln(Σ_(m=0) ^n x^m )dx=? −−−−−−−−−−−−−by MATH.AMIN

niceintegral011xln(nm=0xm)dx=?byMATH.AMIN

Question Number 165218    Answers: 1   Comments: 1

Question by M.N July Φ = ∫_0 ^( 1) ((ln(1 + x^4 + x^8 ))/x)dx Φ =^(x=x^(1/2) ) (1/2)∫_0 ^( 1) ((ln(1+x^2 +x^4 ))/x)dx Φ = (1/2)∫_0 ^( 1) ((ln(((1−x^2 )/(1−x^6 ))))/x)dx = (1/2)∫_0 ^( 1) ((ln(1−x^2 ))/x)dx − (1/2)∫_0 ^( 1) ((ln(1−x^6 ))/x)dx Φ = (1/2)(A − B) A =^(x=x^(1/2) ) (1/2)∫_0 ^( 1) ((ln(1−x))/x)dx = (1/2)Li_2 (1) B =^(x=x^(1/6) ) (1/6)∫_0 ^( 1) ((x^((1/6)−1) ln(1−x))/x^(1/6) )dx B = (1/6)∫_0 ^( 1) ((ln(1−x))/x)dx = (1/6)Li_2 (1) Φ = (1/2)((1/2)Li_2 (1)−(1/6)Li_2 (1)) = (1/6)Li_2 (1) 𝚽 = ((𝛇(2))/3) ▲▲▲

QuestionbyM.NJulyΦ=01ln(1+x4+x8)xdxΦ=x=x121201ln(1+x2+x4)xdxΦ=1201ln(1x21x6)xdx=1201ln(1x2)xdx1201ln(1x6)xdxΦ=12(AB)A=x=x121201ln(1x)xdx=12Li2(1)B=x=x161601x161ln(1x)x16dxB=1601ln(1x)xdx=16Li2(1)Φ=12(12Li2(1)16Li2(1))=16Li2(1)Φ=ζ(2)3

Question Number 165183    Answers: 0   Comments: 1

Question Number 165164    Answers: 1   Comments: 0

Question Number 165271    Answers: 1   Comments: 0

Let , f : [ 0 , 1 ] → R is a continuous function , prove that : lim_( n→ ∞) ∫_0 ^( 1) (( n f(x))/(1+ n^2 x^( 2) )) dx = (π/2) f (0 ) −−− proof −−− S_( n) = [∫_(0 ) ^( (1/( (√n)))) (( n. f(x))/(1 + n^( 2) x^( 2) )) dx =Ω_( n) ]+[ ∫_(1/( (√n))) ^( 1) ((n.f (x))/(1 + n^( 2) x^( 2) )) dx = Φ_( n) ] Ω_( n) =_(∃ t_( n) ∈ ( 0 , (1/( (√n) )) )) ^(MeanValueTheorem( first)) f (t_( n) )∫_(0 ) ^( (1/( (√n)))) (( n)/(1 + n^( 2) x^( 2) ))dx = f ( t_( n) ) ( tan^( −1) ( (√n) )) lim_( n→∞) (Ω_( n) ) = (π/2) f (lim_( n→∞) ( t_( n) ) ) = (π/2) f (0 ) Φ_( n) = ∫_(1/( (√n))) ^( 1) (( n. f(x) )/(1 + n^( 2) x^( 2) )) dx ⇒_(∃ M >0) ^(f is bounded) ∣ Φ_( n) ∣ ≤ M.∫_(1/( (√n))) ^( 1) (n/(1+ n^( 2) x^( 2) )) dx ⇒ ∣ Φ_( n) ∣ ≤ M . ( tan^( −1) ( n )− tan^( −1) ( (√n) )) lim_( n→ ∞) ∣ Φ_( n) ∣ = 0 ⇒ lim_( n→∞) Φ_( n) =0 ∴ lim_( n→ ∞) ( S_( n) ) = (π/2) f (0 ) ■ m.n

Let,f:[0,1]Risacontinuousfunction,provethat:limn01nf(x)1+n2x2dx=π2f(0)proofSn=[01nn.f(x)1+n2x2dx=Ωn]+[1n1n.f(x)1+n2x2dx=Φn]Ωn=MeanValueTheorem(first)tn(0,1n)f(tn)01nn1+n2x2dx=f(tn)(tan1(n))limn(Ωn)=π2f(limn(tn))=π2f(0)Φn=1n1n.f(x)1+n2x2dxfisboundedM>0ΦnM.1n1n1+n2x2dxΦnM.(tan1(n)tan1(n))limnΦn=0limnΦn=0limn(Sn)=π2f(0)m.n

Question Number 165273    Answers: 1   Comments: 0

lim_( n→ ∞) ∫_0 ^( 1) (( n . e^( 1− x^( 2) ) )/( 1 + n^( 2) x^( 2) )) dx =? −−−−−−

limn01n.e1x21+n2x2dx=?

Question Number 165097    Answers: 1   Comments: 0

Question Number 165094    Answers: 0   Comments: 0

Question Number 165010    Answers: 0   Comments: 0

Ω= Σ_(n=1) ^∞ (( ψ^((2)) ( 1+ n ))/( n)) = ? −−− m.n −−−

Ω=n=1ψ(2)(1+n)n=?m.n

Question Number 164974    Answers: 1   Comments: 0

∫_0 ^( 1) (( ln( 1− x ).ln(x ) )/x^( (3/2)) )dx=^? π^( 2) −8ln(2 ) −−− m.n −−−

01ln(1x).ln(x)x32dx=?π28ln(2)m.n

  Pg 40      Pg 41      Pg 42      Pg 43      Pg 44      Pg 45      Pg 46      Pg 47      Pg 48      Pg 49   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com