Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 5

Question Number 216579    Answers: 0   Comments: 0

∫_0 ^(π/4) ∫_0 ^(π/4) ((tan(x^2 +y^2 )+sin(x^2 +y^2 ))/(tan(x^2 +y^2 )+cos(x^2 +y^2 )))dxdy

0π40π4tan(x2+y2)+sin(x2+y2)tan(x2+y2)+cos(x2+y2)dxdy

Question Number 216491    Answers: 2   Comments: 0

Question Number 216486    Answers: 1   Comments: 0

∫_( 0) ^( 1) x(√(x ((x ((x ((x ...))^(1/5) ))^(1/4) ))^(1/3) )) dx

01xxxxx...543dx

Question Number 216408    Answers: 0   Comments: 1

∫_(−1) ^1 (1/x)(√((1+x)/(1−x)))ln(((2x^2 +2x+1)/(2x^2 −2x+1)))dx

111x1+x1xln(2x2+2x+12x22x+1)dx

Question Number 216390    Answers: 0   Comments: 3

f(x)=ax

f(x)=ax

Question Number 216381    Answers: 1   Comments: 0

∫(lnx)^2 dx

(lnx)2dx

Question Number 216372    Answers: 2   Comments: 0

∫((xe^x )/((x+1)^2 ))dx

xex(x+1)2dx

Question Number 216296    Answers: 0   Comments: 0

Question Number 216281    Answers: 0   Comments: 4

Prove:∫_0 ^(π/2) dφ∫_0 ^(π/2) f(sinθ cos θ)sinθ dθ=(π/2)∫_0 ^1 f(x)dx

Prove:0π2dϕ0π2f(sinθcosθ)sinθdθ=π201f(x)dx

Question Number 216093    Answers: 1   Comments: 0

Question Number 216042    Answers: 1   Comments: 2

(i) ∫sec^5 θdθ (ii) ∫ (((√(tan θ)) dθ)/(cos θ))

(i)sec5θdθ(ii)tanθdθcosθ

Question Number 215995    Answers: 1   Comments: 0

∫∫∫_D (√(x^2 +y^2 +z^2 )) dv = ? D = x^2 +y^2 +z^2 <z

Dx2+y2+z2dv=?D=x2+y2+z2<z

Question Number 215974    Answers: 1   Comments: 0

∫(√((2sin^(−1) x−x(√(1−x^2 )))^2 +x^4 ))dx

(2sin1xx1x2)2+x4dx

Question Number 215963    Answers: 1   Comments: 0

Question Number 215789    Answers: 1   Comments: 1

Question Number 215782    Answers: 1   Comments: 0

Question Number 215775    Answers: 1   Comments: 1

∫_0 ^( s) (√(1−s^2 ))(1+(√(1−((x/s))^2 ))−(√(1−x^2 )))dx

s01s2(1+1(xs)21x2)dx

Question Number 215754    Answers: 1   Comments: 0

Question Number 215704    Answers: 1   Comments: 1

Question Number 215687    Answers: 2   Comments: 0

Question Number 215604    Answers: 1   Comments: 0

Question Number 215550    Answers: 1   Comments: 0

Let u^((1)) ,u^((2)) s.t. { ((u_(tt) ^((1)) =((∂^2 /∂x_1 ^2 )+(∂^2 /∂x_i ^2 ))u^((1)) )),((u^((1)) (x_1 ,x_2 ,0)=𝛙(x_1 ,x_2 ))),((u^((1)) (x_1 ,x_2 ,0)=0)) :}, { ((u_(tt) ^((2)) =((∂^2 /∂x_1 ^2 )+(∂^2 /∂x_2 ^2 )+c^2 )u^((2)) )),((u^((2)) (x_1 x_2 ,0)=0)),((u_t ^((2)) (x_1 ,x_2 ,0)=𝛙(x_1 ,x_2 ))) :} prove:u^((2)) (x_1 ,x_2 ,t)=(1/(2𝛑))∫∫_(𝛏_1 ^2 +𝛏_2 ^2 ≤t^2 ) ((e^(𝛏_2 c) u^((1)) (x_1 ,x_2 ,𝛏_1 )d𝛏_1 d𝛏_2 )/( (√(t^2 −𝛏_1 ^2 −𝛏_2 ^2 ))))

Letu(1),u(2)s.t.{utt(1)=(2x12+2xi2)u(1)u(1)(x1,x2,0)=ψ(x1,x2)u(1)(x1,x2,0)=0,{utt(2)=(2x12+2x22+c2)u(2)u(2)(x1x2,0)=0ut(2)(x1,x2,0)=ψ(x1,x2)prove:u(2)(x1,x2,t)=12πξ12+ξ22t2eξ2cu(1)(x1,x2,ξ1)dξ1dξ2t2ξ12ξ22

Question Number 215540    Answers: 1   Comments: 0

∫_(Σ_(1≤i≤n) x_i ^2 ≤1) (Σ_(1≤i≤n) x_i ^2 )^m (Σ_(1≤i≤n) a_i x_i )^(2k) Π_(1≤i≤n) dx_i

1inxi21(1inxi2)m(1inaixi)2k1indxi

Question Number 215535    Answers: 1   Comments: 0

∫_(Σ_(1≤i≤n) x_i ^2 ≤R^2 ) Σ_(1≤i≤n) x_i (∂f/∂x_i )Π_(1≤i≤n) dx_i =?

1inxi2R21inxifxi1indxi=?

Question Number 215498    Answers: 2   Comments: 0

∫(e^(−ωu) +cos(u)−((sin(ωu))/e^u ))du

(eωu+cos(u)sin(ωu)eu)du

Question Number 215496    Answers: 1   Comments: 1

∫_0 ^π ((xtanx)/(secx + tanx)) dx Solve the integral.

0πxtanxsecx+tanxdxSolvetheintegral.

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com