
|
|

|
All Questions Topic List |
IntegrationQuestion and Answers: Page 5 |
Question Number 216579 Answers: 0 Comments: 0
|
∫_0 ^(π/4) ∫_0 ^(π/4) ((tan(x^2 +y^2 )+sin(x^2 +y^2 ))/(tan(x^2 +y^2 )+cos(x^2 +y^2 )))dxdy
|
|
Question Number 216491 Answers: 2 Comments: 0
|
|
Question Number 216486 Answers: 1 Comments: 0
|
∫_( 0) ^( 1) x(√(x ((x ((x ((x ...))^(1/5) ))^(1/4) ))^(1/3) )) dx
|
|
Question Number 216408 Answers: 0 Comments: 1
|
∫_(−1) ^1 (1/x)(√((1+x)/(1−x)))ln(((2x^2 +2x+1)/(2x^2 −2x+1)))dx
|
|
Question Number 216390 Answers: 0 Comments: 3
|
f(x)=ax
|
|
Question Number 216381 Answers: 1 Comments: 0
|
∫(lnx)^2 dx
|
|
Question Number 216372 Answers: 2 Comments: 0
|
∫((xe^x )/((x+1)^2 ))dx
|
|
Question Number 216296 Answers: 0 Comments: 0
|
|
Question Number 216281 Answers: 0 Comments: 4
|
Prove:∫_0 ^(π/2) dφ∫_0 ^(π/2) f(sinθ cos θ)sinθ dθ=(π/2)∫_0 ^1 f(x)dx
|
|
Question Number 216093 Answers: 1 Comments: 0
|
|
Question Number 216042 Answers: 1 Comments: 2
|
(i) ∫sec^5 θdθ
(ii) ∫ (((√(tan θ)) dθ)/(cos θ))
|
|
Question Number 215995 Answers: 1 Comments: 0
|
∫∫∫_D (√(x^2 +y^2 +z^2 )) dv = ?
D = x^2 +y^2 +z^2 <z
|
|
Question Number 215974 Answers: 1 Comments: 0
|
∫(√((2sin^(−1) x−x(√(1−x^2 )))^2 +x^4 ))dx
|
|
Question Number 215963 Answers: 1 Comments: 0
|
|
Question Number 215789 Answers: 1 Comments: 1
|
|
Question Number 215782 Answers: 1 Comments: 0
|
|
Question Number 215775 Answers: 1 Comments: 1
|
∫_0 ^( s) (√(1−s^2 ))(1+(√(1−((x/s))^2 ))−(√(1−x^2 )))dx
|
|
Question Number 215754 Answers: 1 Comments: 0
|
|
Question Number 215704 Answers: 1 Comments: 1
|
|
Question Number 215687 Answers: 2 Comments: 0
|
|
Question Number 215604 Answers: 1 Comments: 0
|
|
Question Number 215550 Answers: 1 Comments: 0
|
Let u^((1)) ,u^((2)) s.t. { ((u_(tt) ^((1)) =((∂^2 /∂x_1 ^2 )+(∂^2 /∂x_i ^2 ))u^((1)) )),((u^((1)) (x_1 ,x_2 ,0)=𝛙(x_1 ,x_2 ))),((u^((1)) (x_1 ,x_2 ,0)=0)) :}, { ((u_(tt) ^((2)) =((∂^2 /∂x_1 ^2 )+(∂^2 /∂x_2 ^2 )+c^2 )u^((2)) )),((u^((2)) (x_1 x_2 ,0)=0)),((u_t ^((2)) (x_1 ,x_2 ,0)=𝛙(x_1 ,x_2 ))) :}
prove:u^((2)) (x_1 ,x_2 ,t)=(1/(2𝛑))∫∫_(𝛏_1 ^2 +𝛏_2 ^2 ≤t^2 ) ((e^(𝛏_2 c) u^((1)) (x_1 ,x_2 ,𝛏_1 )d𝛏_1 d𝛏_2 )/( (√(t^2 −𝛏_1 ^2 −𝛏_2 ^2 ))))
|
|
Question Number 215540 Answers: 1 Comments: 0
|
∫_(Σ_(1≤i≤n) x_i ^2 ≤1) (Σ_(1≤i≤n) x_i ^2 )^m (Σ_(1≤i≤n) a_i x_i )^(2k) Π_(1≤i≤n) dx_i
|
|
Question Number 215535 Answers: 1 Comments: 0
|
∫_(Σ_(1≤i≤n) x_i ^2 ≤R^2 ) Σ_(1≤i≤n) x_i (∂f/∂x_i )Π_(1≤i≤n) dx_i =?
|
|
Question Number 215498 Answers: 2 Comments: 0
|
∫(e^(−ωu) +cos(u)−((sin(ωu))/e^u ))du
|
|
Question Number 215496 Answers: 1 Comments: 1
|
∫_0 ^π ((xtanx)/(secx + tanx)) dx
Solve the integral.
|
|
Pg 1
Pg 2
Pg 3
Pg 4
Pg 5
Pg 6
Pg 7
Pg 8
Pg 9
Pg 10
|
Terms of Service |
Privacy Policy |
Contact: info@tinkutara.com |