Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 50

Question Number 164211    Answers: 1   Comments: 0

Question Number 164208    Answers: 0   Comments: 0

Question Number 164163    Answers: 2   Comments: 0

Prove the; ∫_(βˆ’βˆž) ^∞ (1/(1 + x^2 )) dx = 𝛑 ^({Z.A})

Provethe;βˆ«βˆ’βˆžβˆž11+x2dx=Ο€{Z.A}

Question Number 164162    Answers: 0   Comments: 5

Prove the; (tan 𝛂 + ((cos 𝛂)/(1 + sin 𝛂))) sin 𝛂 = 𝛂 ^([Z.A])

Provethe;(tanΞ±+cosΞ±1+sinΞ±)sinΞ±=Ξ±[Z.A]

Question Number 164129    Answers: 1   Comments: 0

prove 𝛗= Re (∫_0 ^( 1) Li_( 2) ( (1/x) ) )dx = ΞΆ (2) βˆ’βˆ’βˆ’m.nβˆ’βˆ’βˆ’

proveΟ•=Re(∫01Li2(1x))dx=ΞΆ(2)βˆ’βˆ’βˆ’m.nβˆ’βˆ’βˆ’

Question Number 164123    Answers: 0   Comments: 0

very nice to problem: find in closed form; ∫_0 ^1 log (1βˆ’x^2 ) log^(n ) (1βˆ’x) dx; n ∈ N^+ ^(z.)

verynicetoproblem:findinclosedform;∫01log(1βˆ’x2)logn(1βˆ’x)dx;n∈N+z.

Question Number 164120    Answers: 0   Comments: 1

How do you all to prove Integral; Prove the; ∫ (((In x)2)/x) dx = (1/3) (In x)^3

HowdoyoualltoproveIntegral;Provethe;∫(Inx)2xdx=13(Inx)3

Question Number 163954    Answers: 4   Comments: 0

Question Number 163854    Answers: 1   Comments: 0

solution with residu theorem ∫_0 ^∞ (x^2 /(x^4 +2x^2 +2))dx=?

solutionwithresidutheorem∫0∞x2x4+2x2+2dx=?

Question Number 163842    Answers: 1   Comments: 0

calculate Ξ© = ∫_0 ^( 1) ((( Arctanh (x))/x^ ))^( 2) dx =? βˆ’βˆ’ m.n βˆ’βˆ’

calculateΞ©=∫01(Arctanh(x)x)2dx=?βˆ’βˆ’m.nβˆ’βˆ’

Question Number 163838    Answers: 0   Comments: 0

Question Number 163829    Answers: 3   Comments: 1

∫(1/(cos x))

∫1cosx

Question Number 163828    Answers: 2   Comments: 0

∫(e^x /x)

∫exx

Question Number 163834    Answers: 0   Comments: 0

∫_0 ^∞ ((t(e^(4t) βˆ’1)(ln(i)+t))/e^(2t) )dt=? by M.A

∫0∞t(e4tβˆ’1)(ln(i)+t)e2tdt=?byM.A

Question Number 163789    Answers: 0   Comments: 1

∫_0 ^1 ((arccotgh(x))/(1βˆ’x^2 ))dx=? by M.A

∫01arccotgh(x)1βˆ’x2dx=?byM.A

Question Number 163785    Answers: 0   Comments: 0

∫_0 ^1 ((ln(xβˆ’1)ln(1βˆ’x))/x)dx=? ∫_0 ^1 ((ln(xβˆ’1)ln(1+x))/x)dx=? by M.A

∫01ln(xβˆ’1)ln(1βˆ’x)xdx=?∫01ln(xβˆ’1)ln(1+x)xdx=?byM.A

Question Number 163786    Answers: 1   Comments: 0

Question Number 163759    Answers: 3   Comments: 0

∫_0 ^1 (((ln(1+x))/x))^2 dx=? by M.A

∫01(ln(1+x)x)2dx=?byM.A

Question Number 163751    Answers: 1   Comments: 0

∫_0 ^1 ln(1+x)ln(1βˆ’x)dx=? by MATH.AMIN βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’

∫01ln(1+x)ln(1βˆ’x)dx=?byMATH.AMINβˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’

Question Number 163709    Answers: 1   Comments: 0

CALCULUS ∫_0 ^1 (x^(2nβˆ’1) /(x+1))dx=? nβ‰₯1

CALCULUS∫01x2nβˆ’1x+1dx=?nβ©Ύ1

Question Number 163688    Answers: 2   Comments: 0

Question Number 163619    Answers: 1   Comments: 2

Prove that; ∫_(βˆ’βˆž) ^0 e^(βˆ’βˆ£t∣) dt = 1

Provethat;βˆ«βˆ’βˆž0eβˆ’βˆ£t∣dt=1

Question Number 163614    Answers: 0   Comments: 0

∫((sec^2 x)/((secx+tanx)^(9/2) ))dx

∫sec2x(secx+tanx)9/2dx

Question Number 163577    Answers: 0   Comments: 0

∫_(βˆ’1) ^( 1) ((1/(1βˆ’ax)))ln (((1+x)/(1βˆ’x))) dx

βˆ«βˆ’11(11βˆ’ax)ln(1+x1βˆ’x)dx

Question Number 163574    Answers: 1   Comments: 0

Show that; ∫_1 ^∞ ((In x)/x^4 ) dx = (1/9)

Showthat;∫1∞Inxx4dx=19

Question Number 163573    Answers: 0   Comments: 1

  Pg 45      Pg 46      Pg 47      Pg 48      Pg 49      Pg 50      Pg 51      Pg 52      Pg 53      Pg 54   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com