Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 51

Question Number 161609    Answers: 0   Comments: 0

∫_0 ^1 ((xln(1+x^4 ))/(1+x^2 ))dx=?

01xln(1+x4)1+x2dx=?

Question Number 161537    Answers: 2   Comments: 0

∫_0 ^( (π/4)) ((1+tan^4 (x))/(cot^2 (x))) dx =?

0π41+tan4(x)cot2(x)dx=?

Question Number 161443    Answers: 1   Comments: 0

Question Number 161412    Answers: 0   Comments: 0

Question Number 161407    Answers: 1   Comments: 0

Question Number 161404    Answers: 1   Comments: 0

Question Number 161393    Answers: 0   Comments: 0

Question Number 161329    Answers: 0   Comments: 0

∫_1 ^( 2) ((tan^(−1) (x−1)log(x))/x)dx

12tan1(x1)log(x)xdx

Question Number 161285    Answers: 5   Comments: 0

(1) ∫ (dx/(1−2cos x)) (2) ∫ ((sin 2x)/(sin x−sin^2 2x)) dx (3) ∫ (dx/(cos 2x−sin x))

(1)dx12cosx(2)sin2xsinxsin22xdx(3)dxcos2xsinx

Question Number 161281    Answers: 0   Comments: 0

Question Number 161265    Answers: 1   Comments: 2

Question Number 161256    Answers: 1   Comments: 0

Given f(x)=f(x+2), ∀x∈R If ∫_0 ^2 f(x)dx= p then ∫_0 ^(2020) f(x+2a)dx=? for a∈Z^+

Givenf(x)=f(x+2),xRIf20f(x)dx=pthen20200f(x+2a)dx=?foraZ+

Question Number 161233    Answers: 0   Comments: 0

Question Number 161229    Answers: 1   Comments: 0

Given f(x)= { ((1−∣x∣ ; x≤1)),((∣x∣−1 ; x>1)) :} find ∫_(−3) ^( 8) [f(x−1)+f(x+1)] dx.

Givenf(x)={1x;x1x1;x>1find38[f(x1)+f(x+1)]dx.

Question Number 161212    Answers: 2   Comments: 2

∫_( 0) ^( (π/2)) ((x sin x cos x)/(cos^4 x +sin^4 x)) dx =?

0π2xsinxcosxcos4x+sin4xdx=?

Question Number 161178    Answers: 1   Comments: 0

∫^∞ _2 ((arctg(x))/(arctg((x/2))))dx=???

2arctg(x)arctg(x2)dx=???

Question Number 161176    Answers: 0   Comments: 0

calculate Θ := Σ_(n=1) ^∞ (( (−1 )^( n−1) )/(n ( n + (1/3) ))) =? ■ m.n −−−−−−−−−−−−−

calculateΘ:=n=1(1)n1n(n+13)=?m.n

Question Number 161100    Answers: 0   Comments: 0

f(x^2 )= 2+∫_( 0) ^( x^2 ) f(y) (1−tan y)dy , ∀x∈R f(−π)=?

f(x2)=2+0x2f(y)(1tany)dy,xRf(π)=?

Question Number 161089    Answers: 3   Comments: 0

prove that I= ∫_0 ^( (π/2)) ln ( 1+ sin (2 α )) dα = 2G − π ln ((√2) ) G: catalan constant

provethatI=0π2ln(1+sin(2α))dα=2Gπln(2)G:catalanconstant

Question Number 161076    Answers: 1   Comments: 0

Ω = ∫_0 ^( ∞) ((ln (1+ x ))/((1+ x^( 2) )^( 2) )) dx = ? −−−−−−−−−−−−

Ω=0ln(1+x)(1+x2)2dx=?

Question Number 161003    Answers: 0   Comments: 0

Question Number 160982    Answers: 0   Comments: 0

Ω = ∫_0 ^( 1) (( ln (−ln (x)))/(1+x)) dx =^? ((−1)/2) ln^( 2) (2)

Ω=01ln(ln(x))1+xdx=?12ln2(2)

Question Number 160979    Answers: 1   Comments: 0

Ω=∫_0 ^1 x^(n−1) ln(1−x)dx=??? n≥1

Ω=01xn1ln(1x)dx=???n1

Question Number 160928    Answers: 1   Comments: 0

calculate Ω = Σ_(n=1) ^∞ (( ζ ( 1+ n ) −1)/(n + 1)) =^? 1− γ −−−−−−−−−−−

calculateΩ=n=1ζ(1+n)1n+1=?1γ

Question Number 160902    Answers: 1   Comments: 0

∫ (dx/( (√(sin^3 x)) (√(cos^5 x)))) =?

dxsin3xcos5x=?

Question Number 160792    Answers: 2   Comments: 0

∫ ((sec x)/( (√(1+2sec x)))) (√((cosec x−cot x)/(cosec x+cot x))) dx =?

secx1+2secxcosecxcotxcosecx+cotxdx=?

  Pg 46      Pg 47      Pg 48      Pg 49      Pg 50      Pg 51      Pg 52      Pg 53      Pg 54      Pg 55   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com