Question and Answers Forum |
IntegrationQuestion and Answers: Page 52 |
![]() |
![]() |
![]() |
![]() |
![]() |
∫_1 ^( 2) ((tan^(−1) (x−1)log(x))/x)dx |
(1) ∫ (dx/(1−2cos x)) (2) ∫ ((sin 2x)/(sin x−sin^2 2x)) dx (3) ∫ (dx/(cos 2x−sin x)) |
![]() |
![]() |
Given f(x)=f(x+2), ∀x∈R If ∫_0 ^2 f(x)dx= p then ∫_0 ^(2020) f(x+2a)dx=? for a∈Z^+ |
![]() |
Given f(x)= { ((1−∣x∣ ; x≤1)),((∣x∣−1 ; x>1)) :} find ∫_(−3) ^( 8) [f(x−1)+f(x+1)] dx. |
∫_( 0) ^( (π/2)) ((x sin x cos x)/(cos^4 x +sin^4 x)) dx =? |
∫^∞ _2 ((arctg(x))/(arctg((x/2))))dx=??? |
calculate Θ := Σ_(n=1) ^∞ (( (−1 )^( n−1) )/(n ( n + (1/3) ))) =? ■ m.n −−−−−−−−−−−−− |
f(x^2 )= 2+∫_( 0) ^( x^2 ) f(y) (1−tan y)dy , ∀x∈R f(−π)=? |
prove that I= ∫_0 ^( (π/2)) ln ( 1+ sin (2 α )) dα = 2G − π ln ((√2) ) G: catalan constant |
Ω = ∫_0 ^( ∞) ((ln (1+ x ))/((1+ x^( 2) )^( 2) )) dx = ? −−−−−−−−−−−− |
![]() |
Ω = ∫_0 ^( 1) (( ln (−ln (x)))/(1+x)) dx =^? ((−1)/2) ln^( 2) (2) |
Ω=∫_0 ^1 x^(n−1) ln(1−x)dx=??? n≥1 |
calculate Ω = Σ_(n=1) ^∞ (( ζ ( 1+ n ) −1)/(n + 1)) =^? 1− γ −−−−−−−−−−− |
∫ (dx/( (√(sin^3 x)) (√(cos^5 x)))) =? |
∫ ((sec x)/( (√(1+2sec x)))) (√((cosec x−cot x)/(cosec x+cot x))) dx =? |
∫_( 0) ^( (π/2)) ((cos^2 x)/(cos^2 x+4sin^2 x)) dx =? |
# Advanced Calculus # Φ = ∫_0 ^( 1) (((ln^ ( (1/(1− x)) ))/x) )^( 3) dx =^? 3 ( ζ (2 ) + ζ (3 )) −−−− solution−−−− Φ =^(I.B.P) [ (( 1)/(2x^( 2) )) ln^( 3) ( 1−x)]_0 ^1 +(3/2) ∫_0 ^( 1) (( ln^( 2) (1− x ))/(x^( 2) (1 − x ))) dx = (1/2) lim_( ξ →1^(− ) ) ((ln^( 3) ( 1− ξ ))/ξ^( 2) ) +(3/2)[∫_0 ^( 1) (( ln^( 2) ( 1− x ))/x)dx = 2 ζ (3)] + (3/2)[∫_0 ^( 1) (( ln^( 2) ( 1−x))/x^( 2) ) dx = (π^( 2) /3) = 2ζ (2 )] +(3/2)∫_0 ^( 1) (( ln^( 2) (1− x))/(1−x)) dx} =(1/2) lim_( ξ →1^( −) ) {((ln^( 3) ( 1−ξ ))/ξ^( 2) ) −ln^( 3) (1− ξ ) } +(3/2) (2ζ (3 )) +(3/2) ( 2ζ (2 )) = 3( ζ (3 ) + 3ζ (2 ) ) ■ m.n |