Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 53

Question Number 159315    Answers: 0   Comments: 1

∫ (dx/( (((x−1)^3 (x+2)^5 ))^(1/4) )) ?

dx(x1)3(x+2)54?

Question Number 159297    Answers: 1   Comments: 1

Question Number 159233    Answers: 1   Comments: 0

Question Number 159226    Answers: 1   Comments: 0

Ω = ∫_0 ^∞ (((x^5 )^(1/6) −(√x))/((1+x^2 ) ln x)) dx =?

Ω=0x56x(1+x2)lnxdx=?

Question Number 159143    Answers: 1   Comments: 0

Question Number 159106    Answers: 0   Comments: 0

∫_0 ^π ((sin(nz))/(z^4 sin(πz)))dz

0πsin(nz)z4sin(πz)dz

Question Number 159080    Answers: 1   Comments: 0

Σ_(n=0) ^∞ (1/(n!(n^4 +n^2 +1)))=?

n=01n!(n4+n2+1)=?

Question Number 159070    Answers: 1   Comments: 0

Ω:= ∫_0 ^( ∞) ( H_( (i/x)) + H_( −(i/x)) ) dx=?

Ω:=0(Hix+Hix)dx=?

Question Number 159069    Answers: 0   Comments: 0

Question Number 159008    Answers: 1   Comments: 0

∫(6^x /(4^x +9^x ))dx=?

6x4x+9xdx=?

Question Number 158993    Answers: 0   Comments: 0

∫_0 ^1 ∫_0 ^1 xye^(x^2 y^2 ) dxdy=?

0101xyex2y2dxdy=?

Question Number 158990    Answers: 0   Comments: 0

∫ ((sec x)/(sin x+csc x−1)) dx=?

secxsinx+cscx1dx=?

Question Number 158973    Answers: 1   Comments: 0

Question Number 158965    Answers: 2   Comments: 0

∫ ((√(1+x))/( (√x) +1)) dx =?

1+xx+1dx=?

Question Number 158922    Answers: 0   Comments: 0

∫e^(sec x) sec^3 x(sin^2 x+cos x+sin x+sin x cos x)dx=?

esecxsec3x(sin2x+cosx+sinx+sinxcosx)dx=?

Question Number 158913    Answers: 0   Comments: 0

Question Number 158903    Answers: 0   Comments: 0

# solve # Φ:=∫_(−∞) ^( ∞) (( xsin(x))/(( 2+ x +x^( 2) )^( 2) )) dx =? −−−−−−−−

You can't use 'macro parameter character #' in math modeΦ:=xsin(x)(2+x+x2)2dx=?

Question Number 158902    Answers: 0   Comments: 0

nice mathematics # calculate # Ω := Σ_(n=0) ^∞ (( 1)/(( 6n + 1 )^( 3) )) = ? −−−−−−−−−−−−

nicemathematicsYou can't use 'macro parameter character #' in math modeΩ:=n=01(6n+1)3=?

Question Number 158839    Answers: 2   Comments: 0

Evaluate the following integrals using integration By Parts 1. ∫_((π )/4) ^(π/2) xcsc^2 xdx 2. ∫_1 ^(√3) arctan((1/x))dx

EvaluatethefollowingintegralsusingintegrationByParts1.π4π2xcsc2xdx2.13arctan(1x)dx

Question Number 158822    Answers: 1   Comments: 0

Σ_(n=0) ^∞ arctan (((−1)^n )/(2n+1))=?

n=0arctan(1)n2n+1=?

Question Number 158742    Answers: 1   Comments: 1

Question Number 158697    Answers: 1   Comments: 0

∫_0 ^1 ln(ln(1−x))dx=?

01ln(ln(1x))dx=?

Question Number 158674    Answers: 0   Comments: 2

Question Number 158596    Answers: 1   Comments: 0

calculate : Ω = ∫_0 ^( (π/4)) (( 1+ tan^( 4) (x))/(cot^( 2) (x))) dx=?

calculate:Ω=0π41+tan4(x)cot2(x)dx=?

Question Number 158591    Answers: 0   Comments: 2

I=∫ (dx/(1+x^6 )) =?

I=dx1+x6=?

Question Number 158517    Answers: 0   Comments: 0

ϑ =∫_( 0) ^( π/2) (dx/((1+(1/(sin^2 x)))^2 )) ?

ϑ=0π/2dx(1+1sin2x)2?

  Pg 48      Pg 49      Pg 50      Pg 51      Pg 52      Pg 53      Pg 54      Pg 55      Pg 56      Pg 57   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com