Question and Answers Forum |
IntegrationQuestion and Answers: Page 57 |
ϑ =∫_( 0) ^( π/2) (dx/((1+(1/(sin^2 x)))^2 )) ? |
prove that 1. I= ∫_0 ^( (π/2)) (( sin( x+tan(x)))/(sin(x)))dx =(π/2) 2. J = ∫_0 ^( (π/2)) ((sin(x−tan(x)))/(sin(x)))dx=((1/e) −(1/2))π |
![]() |
∫ (dx/(1+x^7 )) ? |
prove: ∫_0 ^∞ (1/(x^5 +x^4 +x^3 +x^2 +x+1))dx=(π/(3(√3))) |
∫_((1;π)) ^((2;π)) (1−(y^2 /x^2 )cos((y/x)))dx+(sin((y/x))+(y/x)cos((y/x)))dy=? |
∫_0 ^∞ ((lnx)/(1−x^2 ))dx |
∫_((1;π)) ^((2;π)) (1−(y^2 /x^2 )cos((y/x)))dx+(sin((y/x))+(y/x)cos((y/x)))dy=? OY on the road that doesn′t cut your arrow |
prove that : Σ_(n=1) ^∞ (( H_( n) . F_n )/2^( n) ) = ln(4) + ((12)/( (√5))) ln( ϕ ) ϕ : Golden ratio F_( n) : fibonacci numbers |
![]() |
∫(1/(1+ln x))dx=? |
∫((5x^3 −3x^2 +7x−3)/((x^2 +1)^2 ))dx Solve by first finding the partial fraction |
![]() |
![]() |
∫((5x^3 −3x^2 +7x−3)/((x^2 +1)^2 ))dx Solve by first giving the partial functions |
∫{((x^2 −x−21)/(2x^3 −x^2 +8x−4))}dx |
f(x)=x−[x] where [x] is the greatest integer function and −3≤x≤3 a) sketch f(x) b) state the domain of f(x) c) study the continuity of f(x) on its domain d) state the range of f(x) |
∫ (dx/(3−tan x)) =? |
∫(dx/(sin^4 x)) |
∫ (dx/((1+(x)^(1/4) )(√x))) =? |
prove that: I=∫_0 ^( ∞) x^( 2) tanh(x).e^( −x) dx=(π^( 3) /8) −2 |
prove that tan^(−1) (((xy)/(rz)))+tan^(−1) (((xz)/(ry)))+tan^(−1) (((yz)/(rx)))=(π/2) |
∫(dx/(sin x+ sec x)) using wiestress substitution |
find the integral: ∫{(3x+1)/(x^2 +4)}dx |
![]() |