Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 62

Question Number 154437    Answers: 3   Comments: 0

∫_0 ^(π/2) arcos(((cosx)/(1+2cosx)))dx

0π2arcos(cosx1+2cosx)dx

Question Number 154422    Answers: 0   Comments: 0

∫((a^2 sin^2 θ+b^2 cos^2 θ)/(a^4 sin^2 θ+b^4 cos^2 θ))dθ

a2sin2θ+b2cos2θa4sin2θ+b4cos2θdθ

Question Number 154421    Answers: 2   Comments: 0

∫[((x/e))^x +((e/x))^x ]ln xdx

[(xe)x+(ex)x]lnxdx

Question Number 154409    Answers: 1   Comments: 0

nice calculus.. prove that : I:=∫_0 ^( ∞) (( (1+e^( −x) )sin^( 2) (x))/x^( (3/2)) ) =(√(2π)) ( 1+ (√((√2) − 1)) ) m.n

nicecalculus..provethat:I:=0(1+ex)sin2(x)x32=2π(1+21)m.n

Question Number 154352    Answers: 0   Comments: 0

∫(x^(n−1) /(x^(3n+1) (x^n −1)))dx=?

xn1x3n+1(xn1)dx=?

Question Number 154318    Answers: 1   Comments: 0

Question Number 154309    Answers: 1   Comments: 0

Question Number 154281    Answers: 0   Comments: 0

∫_1 ^3 ⌊x−3⌋dx

13x3dx

Question Number 154280    Answers: 0   Comments: 0

∫_0 ^( 1) ∫_0 ^( z^2 ) ∫_0 ^( 3) y cos (z^5 )dxdydz =?

010z203ycos(z5)dxdydz=?

Question Number 154235    Answers: 1   Comments: 0

prove that: Im( ψ ( i ) )= (( 1)/( 2)) + (( π)/2) coth(π ) m.n

provethat:Im(ψ(i))=12+π2coth(π)m.n

Question Number 154223    Answers: 0   Comments: 0

∫_0 ^( 1) (x^( i+1) /(1−x)) dx = [−ln(1−x)x^( i+1) ]_0 ^( 1) + (1+i)∫_0 ^( 1) x^( i) ln (1−x )dx = (1+i ) ∫_0 ^( 1) Σ_(n=1) ^∞ (x^( n+i) /n)dx = (1+i )Σ(1/(n (n+i+1 )))= = Σ(1/(n )) −(1/(n+i+1)) = γ + ψ ( i+2 ) = γ + (1/(1+i)) +ψ (1+i) γ + ((1−i)/2) + (1/i) + ψ (i ) im = −(3/2) + (1/2) +(π/2) coth(π ) −1 +(π/2) tan h(π ) ..✓

01xi+11xdx=[ln(1x)xi+1]01+(1+i)01xiln(1x)dx=(1+i)01n=1xn+indx=(1+i)Σ1n(n+i+1)==Σ1n1n+i+1=γ+ψ(i+2)=γ+11+i+ψ(1+i)γ+1i2+1i+ψ(i)im=32+12+π2coth(π)1+π2tanh(π)..

Question Number 154208    Answers: 0   Comments: 0

∵∴∵∴prove that ∫_0 ^∞ ∫_0 ^∞ ((log(1−e^(−x) )(yLi_2 (e^(−x−y) )+Li_3 (e^(−x−y) ))/(1−e^(x+y) ))e^(x+y) dxdy=((21)/8)ζ(6)+ζ^2 (3) ∵∴∵by MATH.AMIN∴∵∴

∵∴∵∴provethat00log(1ex)(yLi2(exy)+Li3(exy)1ex+yex+ydxdy=218ζ(6)+ζ2(3)∵∴∵byMATH.AMIN∴∵∴

Question Number 154195    Answers: 3   Comments: 0

∫((x+sinx)/(1+cosx))dx please,help me

x+sinx1+cosxdxplease,helpme

Question Number 154192    Answers: 1   Comments: 0

Ω :=∫_0 ^( 1) (( x.sin(ln(x)))/(1−x))dx method 1 Ω= Im[∫_0 ^( 1) (( x^( i+1) )/(1−x)) dx=Φ] Φ = ∫_0 ^( 1) (( x^( i+1) +x^( i+2) )/(1−x^( 2) ))dx =^(x^( 2) =t) (1/2)∫_0 ^( 1) (( t^( (i/2)) −t^((i+1)/2) )/(1−t))dt = (1/2) { ψ (1 +((i+1)/2))−ψ (1+(i/2))} = (1/2) { (2/(1+i)) + ψ ( ((1+i)/2) )−(2/i)−ψ ((i/2))} = ((−i)/(−1+i)) + (1/2) {ψ (((1+i)/2))−ψ((i/2) )} = −(1/2) +(i/(2 )) +(1/2) {ψ(((1+i)/2))−ψ((i/2))} Ω = Im (Φ )= (1/2) +(1/2) Im(ψ((1/2) +(i/2)))−(1/2) Im((i/2)) = (1/(2 )) { 1 +(π/2) tanh((π/2)) −1−(π/2) coth((π/2))} =(π/4) {((−1)/(sinh((π/2)).cosh((π/2))))}=((−π)/(2 sinh (π ))) ✓

Ω:=01x.sin(ln(x))1xdxmethod1Ω=Im[01xi+11xdx=Φ]Φ=01xi+1+xi+21x2dx=x2=t1201ti2ti+121tdt=12{ψ(1+i+12)ψ(1+i2)}=12{21+i+ψ(1+i2)2iψ(i2)}=i1+i+12{ψ(1+i2)ψ(i2)}=12+i2+12{ψ(1+i2)ψ(i2)}Ω=Im(Φ)=12+12Im(ψ(12+i2))12Im(i2)=12{1+π2tanh(π2)1π2coth(π2)}=π4{1sinh(π2).cosh(π2)}=π2sinh(π)

Question Number 154186    Answers: 1   Comments: 0

Question Number 154175    Answers: 2   Comments: 1

Question Number 154143    Answers: 2   Comments: 0

Question Number 154142    Answers: 2   Comments: 0

Question Number 154080    Answers: 1   Comments: 0

Ω =∫_0 ^( (π/2)) ln^2 (((1+sin t)/(1−sin t)))dt

Ω=0π2ln2(1+sint1sint)dt

Question Number 154062    Answers: 0   Comments: 0

Question Number 154038    Answers: 0   Comments: 1

monster integral ∫_(−∞) ^( ∞) sin(x^2 )cos(x^3 ) dx

monsterintegralsin(x2)cos(x3)dx

Question Number 154037    Answers: 0   Comments: 0

Prove:: Σ_(n=−∞) ^(+∞) arctan (((sinh x)/(cosh n)))=πx

Prove::+n=arctan(sinhxcoshn)=πx

Question Number 153949    Answers: 1   Comments: 0

∫_0 ^( ∞) sin(x^2 )cos(x^3 )dx

0sin(x2)cos(x3)dx

Question Number 153946    Answers: 0   Comments: 0

show whether ∫_0 ^( ∞) sin(x^2 )cos((√x))dx is solvable

showwhether0sin(x2)cos(x)dxissolvable

Question Number 153893    Answers: 0   Comments: 0

∫_( 0) ^( ∞) a Π_(p → 1) ^∞ (((p^2 − x^(2n) )/p^2 ))dx, 1 < 2n < n + 1

0ap1(p2x2np2)dx,1<2n<n+1

Question Number 153875    Answers: 0   Comments: 0

Prove that.. 𝛗 : =∫_( 1) ^( +∞) (( ln (x ))/(( x^( π) −1 )( ln^( 2) (x) +1 )^2 ))dx= ((π^( 2) − 8)/(16)) ■

Provethat..ϕ:=1+ln(x)(xπ1)(ln2(x)+1)2dx=π2816

  Pg 57      Pg 58      Pg 59      Pg 60      Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com