Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 63

Question Number 153875    Answers: 0   Comments: 0

Prove that.. 𝛗 : =∫_( 1) ^( +∞) (( ln (x ))/(( x^( Ο€) βˆ’1 )( ln^( 2) (x) +1 )^2 ))dx= ((Ο€^( 2) βˆ’ 8)/(16)) β– 

Provethat..Ο•:=∫1+∞ln(x)(xΟ€βˆ’1)(ln2(x)+1)2dx=Ο€2βˆ’816β—Ό

Question Number 153873    Answers: 0   Comments: 1

∫_0 ^( ∞) (( x)/((1 +x^( 2) ) ( e^( 2Ο€x) βˆ’ 1))) dx =((2Ξ³βˆ’ 1)/4)

∫0∞x(1+x2)(e2Ο€xβˆ’1)dx=2Ξ³βˆ’14

Question Number 153759    Answers: 0   Comments: 0

Ξ©= Ξ£_(n=1) ^∞ {n^2 (∫_0 ^( (Ο€/2)) (( sin^( 2) (x ))/((sin(x)+cos(x))^( 4) )))^( n) dx}=?

Ξ©=βˆ‘βˆžn=1{n2(∫0Ο€2sin2(x)(sin(x)+cos(x))4)ndx}=?

Question Number 153734    Answers: 0   Comments: 0

Question Number 153721    Answers: 2   Comments: 0

prove that : I:= ∫_0 ^( ∞) (( x^( 3) )/(sinh ( x ))) dx = ((Ο€^4 )/8) β–  m.n

provethat:I:=∫0∞x3sinh(x)dx=Ο€48β—Όm.n

Question Number 153555    Answers: 1   Comments: 0

Ξ© := ∫_0 ^( (Ο€/2)) cos(2x).ln(sin(x))dx=^? βˆ’(Ο€/4) solution (1 ) Ξ© := ∫_0 ^( (Ο€/2)) ( 2cos^( 2) (x)βˆ’1)ln(sin(x))dx := 2∫_0 ^( (Ο€/2)) cos^( 2) (x).ln(sin(x))dxβˆ’βˆ«_0 ^( (Ο€/2)) ln(sin(x))dx we know that : ∫_0 ^(Ο€/2) ln(sin(x))dx=_(earlier) ^(derived) ((βˆ’Ο€)/2) ln(2) ∫_0 ^( (Ο€/2)) cos^( 2) (x).ln(sin(x))dx=_(posts) ^(previous) βˆ’(Ο€/4)ln(2)βˆ’(Ο€/8) ∴ Ξ© := βˆ’(Ο€/2) ln(2) βˆ’(Ο€/4) +(Ο€/2) ln(2) β—‚ Ξ© =βˆ’ (Ο€/4) β–Ά m.n

Ξ©:=∫0Ο€2cos(2x).ln(sin(x))dx=?βˆ’Ο€4solution(1)Ξ©:=∫0Ο€2(2cos2(x)βˆ’1)ln(sin(x))dx:=2∫0Ο€2cos2(x).ln(sin(x))dxβˆ’βˆ«0Ο€2ln(sin(x))dxweknowthat:∫0Ο€2ln(sin(x))dx=derivedearlierβˆ’Ο€2ln(2)∫0Ο€2cos2(x).ln(sin(x))dx=previouspostsβˆ’Ο€4ln(2)βˆ’Ο€8∴Ω:=βˆ’Ο€2ln(2)βˆ’Ο€4+Ο€2ln(2)β—‚Ξ©=βˆ’Ο€4β–Έm.n

Question Number 153535    Answers: 1   Comments: 0

find ∫((√(x^2 βˆ’9))/x^3 ) dx=?

find∫x2βˆ’9x3dx=?

Question Number 153430    Answers: 1   Comments: 2

Question Number 153200    Answers: 0   Comments: 0

∫_0 ^(eβˆ’1) ∫_0 ^(eβˆ’xβˆ’1) ∫_0 ^(x+y+e) ((ln(zβˆ’xβˆ’y))/((xβˆ’e)(x+yβˆ’e)))dxdydz=?

∫0eβˆ’1∫0eβˆ’xβˆ’1∫0x+y+eln(zβˆ’xβˆ’y)(xβˆ’e)(x+yβˆ’e)dxdydz=?

Question Number 153151    Answers: 2   Comments: 0

∫_0 ^1 ((ln(x^3 +1))/(x+1))dx

∫01ln(x3+1)x+1dx

Question Number 153117    Answers: 1   Comments: 0

∫_0 ^1 cot^(βˆ’1) (1βˆ’x+x^2 )dx

∫01cotβˆ’1(1βˆ’x+x2)dx

Question Number 153114    Answers: 2   Comments: 0

∫_0 ^1 ((log (1+x))/(1+x^2 ))dx

∫01log(1+x)1+x2dx

Question Number 153112    Answers: 1   Comments: 0

∫_(βˆ’Ο€) ^Ο€ (sin^(75) x+x^(125) )dx=0

βˆ«βˆ’Ο€Ο€(sin75x+x125)dx=0

Question Number 153111    Answers: 0   Comments: 0

∫_(βˆ’1) ^1 e^x dx as limit of the sum

βˆ«βˆ’11exdxaslimitofthesum

Question Number 153110    Answers: 0   Comments: 0

∫_0 ^1 (3x^2 +2x+1)dx as the limit of sum

∫01(3x2+2x+1)dxasthelimitofsum

Question Number 153104    Answers: 1   Comments: 0

∫_0 ^Ο€ (x^3 /(x^3 +(Ο€βˆ’x)^3 ))dx=?

∫0Ο€x3x3+(Ο€βˆ’x)3dx=?

Question Number 153063    Answers: 0   Comments: 5

show that ∫_(βˆ’βˆž) ^( ∞) (1/( (√(x^2 +1)))) dx is unsolvable

showthatβˆ«βˆ’βˆžβˆž1x2+1dxisunsolvable

Question Number 153040    Answers: 0   Comments: 0

prove that.. Ξ© =∫_0 ^( ∞) (( sin (x ))/(sinh(x)))dx =(Ο€/2) tanh ((Ο€/2))

provethat..Ξ©=∫0∞sin(x)sinh(x)dx=Ο€2tanh(Ο€2)

Question Number 152939    Answers: 1   Comments: 0

Q : If a , b are positive numbers and { (( a = 1 + (( 6a βˆ’2))^(1/3) )),(( b = 1 + (( 6b βˆ’2))^(1/3) )) :} then find the value of , a.b =? ... Compiled by m.n : (E lementary olympiad ). β– 

Q:Ifa,barepositivenumbersand{a=1+6aβˆ’23b=1+6bβˆ’23thenfindthevalueof,a.b=?...Compiledbym.n:(Elementaryolympiad).β—Ό

Question Number 152910    Answers: 0   Comments: 0

∫^ x^x^x dx=

∫xxxdx=

Question Number 152874    Answers: 2   Comments: 0

solve: I := ∫_0 ^( ∞) ((( tanh (x) )/x) )^( 2) dx = ? m.n.

solve:I:=∫0∞(tanh(x)x)2dx=?m.n.

Question Number 152863    Answers: 1   Comments: 1

∫_(βˆ’βˆž) ^( ∞) (1/( (√(x^2 +1)))) dx

βˆ«βˆ’βˆžβˆž1x2+1dx

Question Number 152861    Answers: 0   Comments: 0

∫_(βˆ’βˆž) ^( ∞) (((ln((x^(√(x^2 +1)) +1)^2 +1))^(βˆ’ln(x^2 +1)) )/( (√(x^(∣⌊xβŒ‹βˆ£) +1)))) dx

βˆ«βˆ’βˆžβˆž(ln((xx2+1+1)2+1))βˆ’ln(x2+1)x∣⌊xβŒ‹βˆ£+1dx

Question Number 152866    Answers: 0   Comments: 0

∫_(βˆ’βˆž) ^( ∞) ((ln((√(x^4 +1))))/((ln(((√(x^2 +1)))^3 ))^2 )) dx

βˆ«βˆ’βˆžβˆžln(x4+1)(ln((x2+1)3))2dx

Question Number 152839    Answers: 0   Comments: 0

Prove that : Ξ©=∫_0 ^( 1) (( ln^( 3) (1 + x ))/x^( 2) )dx = (3/4) ΞΆ (3 )βˆ’ 2ln^( 3) ( 2 ) β–  Prepared by: M.N

Provethat:Ξ©=∫01ln3(1+x)x2dx=34ΞΆ(3)βˆ’2ln3(2)β—ΌPreparedby:M.N

Question Number 152778    Answers: 0   Comments: 0

Solve .......... Ξ© := ∫_0 ^( 1) x. sin( ln (x ))dx =^? ((βˆ’1)/( 5)) solution.... Ξ© :=^(i.b.p) [ (x^( 2) /2) . sin(ln(x))]_0 ^( 1) βˆ’(1/2)∫_0 ^( 1) x.cos( ln (x ))dx := ((βˆ’1)/2) ∫_0 ^( 1) x. cos (ln (x ))dx :=^(i.b.p) ((βˆ’1)/2) {[ (x^( 2) /2) cos (ln(x ))]_0 ^1 +(1/2) ∫x. sin(ln(x ))dx} := ((βˆ’1)/4) βˆ’(1/4) Ξ© (5/4) Ξ© = ((βˆ’1)/4) β‡’ Ξ© := ((βˆ’1)/( 5)) .........β–  m.n .................................

Solve..........Ξ©:=∫01x.sin(ln(x))dx=?βˆ’15solution....Ξ©:=i.b.p[x22.sin(ln(x))]01βˆ’12∫01x.cos(ln(x))dx:=βˆ’12∫01x.cos(ln(x))dx:=i.b.pβˆ’12{[x22cos(ln(x))]01+12∫x.sin(ln(x))dx}:=βˆ’14βˆ’14Ξ©54Ξ©=βˆ’14β‡’Ξ©:=βˆ’15.........β—Όm.n.................................

  Pg 58      Pg 59      Pg 60      Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66      Pg 67   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com