Question and Answers Forum |
IntegrationQuestion and Answers: Page 63 |
Prove that.. π : =β«_( 1) ^( +β) (( ln (x ))/(( x^( Ο) β1 )( ln^( 2) (x) +1 )^2 ))dx= ((Ο^( 2) β 8)/(16)) β |
β«_0 ^( β) (( x)/((1 +x^( 2) ) ( e^( 2Οx) β 1))) dx =((2Ξ³β 1)/4) |
Ξ©= Ξ£_(n=1) ^β {n^2 (β«_0 ^( (Ο/2)) (( sin^( 2) (x ))/((sin(x)+cos(x))^( 4) )))^( n) dx}=? |
![]() |
prove that : I:= β«_0 ^( β) (( x^( 3) )/(sinh ( x ))) dx = ((Ο^4 )/8) β m.n |
Ξ© := β«_0 ^( (Ο/2)) cos(2x).ln(sin(x))dx=^? β(Ο/4) solution (1 ) Ξ© := β«_0 ^( (Ο/2)) ( 2cos^( 2) (x)β1)ln(sin(x))dx := 2β«_0 ^( (Ο/2)) cos^( 2) (x).ln(sin(x))dxββ«_0 ^( (Ο/2)) ln(sin(x))dx we know that : β«_0 ^(Ο/2) ln(sin(x))dx=_(earlier) ^(derived) ((βΟ)/2) ln(2) β«_0 ^( (Ο/2)) cos^( 2) (x).ln(sin(x))dx=_(posts) ^(previous) β(Ο/4)ln(2)β(Ο/8) β΄ Ξ© := β(Ο/2) ln(2) β(Ο/4) +(Ο/2) ln(2) β Ξ© =β (Ο/4) βΆ m.n |
find β«((β(x^2 β9))/x^3 ) dx=? |
![]() |
β«_0 ^(eβ1) β«_0 ^(eβxβ1) β«_0 ^(x+y+e) ((ln(zβxβy))/((xβe)(x+yβe)))dxdydz=? |
β«_0 ^1 ((ln(x^3 +1))/(x+1))dx |
β«_0 ^1 cot^(β1) (1βx+x^2 )dx |
β«_0 ^1 ((log (1+x))/(1+x^2 ))dx |
β«_(βΟ) ^Ο (sin^(75) x+x^(125) )dx=0 |
β«_(β1) ^1 e^x dx as limit of the sum |
β«_0 ^1 (3x^2 +2x+1)dx as the limit of sum |
β«_0 ^Ο (x^3 /(x^3 +(Οβx)^3 ))dx=? |
show that β«_(ββ) ^( β) (1/( (β(x^2 +1)))) dx is unsolvable |
prove that.. Ξ© =β«_0 ^( β) (( sin (x ))/(sinh(x)))dx =(Ο/2) tanh ((Ο/2)) |
Q : If a , b are positive numbers and { (( a = 1 + (( 6a β2))^(1/3) )),(( b = 1 + (( 6b β2))^(1/3) )) :} then find the value of , a.b =? ... Compiled by m.n : (E lementary olympiad ). β |
β«^ x^x^x dx= |
solve: I := β«_0 ^( β) ((( tanh (x) )/x) )^( 2) dx = ? m.n. |
β«_(ββ) ^( β) (1/( (β(x^2 +1)))) dx |
β«_(ββ) ^( β) (((ln((x^(β(x^2 +1)) +1)^2 +1))^(βln(x^2 +1)) )/( (β(x^(β£βxββ£) +1)))) dx |
β«_(ββ) ^( β) ((ln((β(x^4 +1))))/((ln(((β(x^2 +1)))^3 ))^2 )) dx |
Prove that : Ξ©=β«_0 ^( 1) (( ln^( 3) (1 + x ))/x^( 2) )dx = (3/4) ΞΆ (3 )β 2ln^( 3) ( 2 ) β Prepared by: M.N |
Solve .......... Ξ© := β«_0 ^( 1) x. sin( ln (x ))dx =^? ((β1)/( 5)) solution.... Ξ© :=^(i.b.p) [ (x^( 2) /2) . sin(ln(x))]_0 ^( 1) β(1/2)β«_0 ^( 1) x.cos( ln (x ))dx := ((β1)/2) β«_0 ^( 1) x. cos (ln (x ))dx :=^(i.b.p) ((β1)/2) {[ (x^( 2) /2) cos (ln(x ))]_0 ^1 +(1/2) β«x. sin(ln(x ))dx} := ((β1)/4) β(1/4) Ξ© (5/4) Ξ© = ((β1)/4) β Ξ© := ((β1)/( 5)) .........β m.n ................................. |