Question and Answers Forum |
IntegrationQuestion and Answers: Page 64 |
∫_0 ^( 1) ∫_0 ^( 1) ∫_0 ^( 1) ((x+y^2 +z^3 +1)/( (√(x+y+z))+1)) dxdydz |
∫_0 ^( 1) ∫_0 ^( 1) ∫_0 ^( 1) ((x+y^2 +z^3 )/(x+y+z)) dxdydz |
∫_(−∞) ^( ∞) (1/( (√(x^2 +1)))) dx |
∫ (x/( (√(1 + x^3 )))) dx |
![]() |
∫ ((t + 13)/( ((t^2 + 5t + 6))^(1/3) )) dt |
∫_(−(Π/2)) ^(Π/2) ((1+cosx)/(3+2sinx))dx please,help me |
![]() |
∫ 9x^2 (4x^2 + 3)^(10) dx |
prove that :: Ω := ∫_(0 ) ^( ∞) (( e^( −x) .ln ((( 1)/( x)) ) sin ( x ))/(x )) dx = (( π)/( 8)) ( 2 γ +ln (2 ) ) ...■ m.n |
Γ((3/4)) = exp(− ((3γ)/4) + ∫_0 ^( 1) f(x)dx) find f(x) |
∫_(−∞) ^( ∞) ((ln((√(x^4 +1))))/( (√(x^4 +1)))) dx |
prove... S =Σ_(n=1) ^∞ (1/) = (1/3) +((2π (√3))/(27)) ...■ |
∫ (dx/(cos x+cosec x)) =? |
Prove that ∫_0 ^π ((xtan x)/(sec x+tan x))dx=(π^2 /2)−π |
∫_0 ^(π/2) sin 2xlog( tan x)dx |
∫ ((tan θ+tan^3 θ)/(1+tan^3 θ))dθ |
∫(3x−2)(√(x^2 +x+1)) dx |
∫((5x+3)/( (√(x^2 +4x+10))))dx |
A particle is projected upwards with a velocity of 96ms^(−1) . In addition to being subject to gravity, it is acted on by a retardation of 16t, where t is the time from the start of the motion. What is the greatest height attained by the particle? |
If x is real show that (2+i)^((1+3i)x) +(2−i)^((1−3i)x) is also real |
...Integral... I := ∫_0 ^( π) ln (sin(x) ).tan^( −1) (cot(x))dx=^? 0 proof :: .... I := ∫_0 ^( π) ln (sin(x) ). tan^( −1) ( tan((π/2) −x ))dx := ∫_0 ^( π) ((π/2) −x ).ln(sin(x))dx := (π/2) ∫_0 ^( π) ln(sin(x))dx−∫_0 ^( π) xln(sin(x))dx := (π/2) (−π ln (2 )) −J ......( 1 ) J : = ∫_0 ^( π) (π − x) ln (sin(x))dx := π (−π ln(2))−J ∴ J :=((−π^( 2) )/2) ln( 2 ) .......(2) (2) ⇛ (1 ) : I = 0 .........■ |
∫((sin x)/(sin 3x))dx |
∫((2x+1)/(4−3x−x^2 ))dx |
∫(((x^2 +5x+3)/(x^2 +3x+2)))dx |
∫cos (log x)dx |