Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 64

Question Number 152714    Answers: 0   Comments: 0

∫_0 ^( 1) ∫_0 ^( 1) ∫_0 ^( 1) ((x+y^2 +z^3 +1)/( (√(x+y+z))+1)) dxdydz

010101x+y2+z3+1x+y+z+1dxdydz

Question Number 152703    Answers: 2   Comments: 0

∫_0 ^( 1) ∫_0 ^( 1) ∫_0 ^( 1) ((x+y^2 +z^3 )/(x+y+z)) dxdydz

010101x+y2+z3x+y+zdxdydz

Question Number 152701    Answers: 0   Comments: 0

∫_(−∞) ^( ∞) (1/( (√(x^2 +1)))) dx

1x2+1dx

Question Number 152660    Answers: 1   Comments: 0

∫ (x/( (√(1 + x^3 )))) dx

x1+x3dx

Question Number 152580    Answers: 1   Comments: 0

Question Number 152576    Answers: 0   Comments: 1

∫ ((t + 13)/( ((t^2 + 5t + 6))^(1/3) )) dt

t+13t2+5t+63dt

Question Number 152572    Answers: 1   Comments: 0

∫_(−(Π/2)) ^(Π/2) ((1+cosx)/(3+2sinx))dx please,help me

Π2Π21+cosx3+2sinxdxplease,helpme

Question Number 152533    Answers: 1   Comments: 0

Question Number 152502    Answers: 1   Comments: 0

∫ 9x^2 (4x^2 + 3)^(10) dx

9x2(4x2+3)10dx

Question Number 152494    Answers: 1   Comments: 0

prove that :: Ω := ∫_(0 ) ^( ∞) (( e^( −x) .ln ((( 1)/( x)) ) sin ( x ))/(x )) dx = (( π)/( 8)) ( 2 γ +ln (2 ) ) ...■ m.n

provethat::Ω:=0ex.ln(1x)sin(x)xdx=π8(2γ+ln(2))...m.n

Question Number 152472    Answers: 1   Comments: 0

Γ((3/4)) = exp(− ((3γ)/4) + ∫_0 ^( 1) f(x)dx) find f(x)

Γ(34)=exp(3γ4+01f(x)dx)findf(x)

Question Number 152468    Answers: 1   Comments: 0

∫_(−∞) ^( ∞) ((ln((√(x^4 +1))))/( (√(x^4 +1)))) dx

ln(x4+1)x4+1dx

Question Number 152345    Answers: 1   Comments: 0

prove... S =Σ_(n=1) ^∞ (1/) = (1/3) +((2π (√3))/(27)) ...■

prove...S=n=11=13+2π327...

Question Number 152291    Answers: 1   Comments: 0

∫ (dx/(cos x+cosec x)) =?

dxcosx+cosecx=?

Question Number 152276    Answers: 1   Comments: 0

Prove that ∫_0 ^π ((xtan x)/(sec x+tan x))dx=(π^2 /2)−π

Provethat0πxtanxsecx+tanxdx=π22π

Question Number 152275    Answers: 2   Comments: 0

∫_0 ^(π/2) sin 2xlog( tan x)dx

0π2sin2xlog(tanx)dx

Question Number 152273    Answers: 1   Comments: 0

∫ ((tan θ+tan^3 θ)/(1+tan^3 θ))dθ

tanθ+tan3θ1+tan3θdθ

Question Number 152271    Answers: 1   Comments: 0

∫(3x−2)(√(x^2 +x+1)) dx

(3x2)x2+x+1dx

Question Number 152270    Answers: 2   Comments: 0

∫((5x+3)/( (√(x^2 +4x+10))))dx

5x+3x2+4x+10dx

Question Number 152492    Answers: 1   Comments: 0

A particle is projected upwards with a velocity of 96ms^(−1) . In addition to being subject to gravity, it is acted on by a retardation of 16t, where t is the time from the start of the motion. What is the greatest height attained by the particle?

Aparticleisprojectedupwardswithavelocityof96ms1.Inadditiontobeingsubjecttogravity,itisactedonbyaretardationof16t,wheretisthetimefromthestartofthemotion.Whatisthegreatestheightattainedbytheparticle?

Question Number 152203    Answers: 0   Comments: 1

If x is real show that (2+i)^((1+3i)x) +(2−i)^((1−3i)x) is also real

Ifxisrealshowthat(2+i)(1+3i)x+(2i)(13i)xisalsoreal

Question Number 152201    Answers: 0   Comments: 0

...Integral... I := ∫_0 ^( π) ln (sin(x) ).tan^( −1) (cot(x))dx=^? 0 proof :: .... I := ∫_0 ^( π) ln (sin(x) ). tan^( −1) ( tan((π/2) −x ))dx := ∫_0 ^( π) ((π/2) −x ).ln(sin(x))dx := (π/2) ∫_0 ^( π) ln(sin(x))dx−∫_0 ^( π) xln(sin(x))dx := (π/2) (−π ln (2 )) −J ......( 1 ) J : = ∫_0 ^( π) (π − x) ln (sin(x))dx := π (−π ln(2))−J ∴ J :=((−π^( 2) )/2) ln( 2 ) .......(2) (2) ⇛ (1 ) : I = 0 .........■

...Integral...I:=0πln(sin(x)).tan1(cot(x))dx=?0proof::....I:=0πln(sin(x)).tan1(tan(π2x))dx:=0π(π2x).ln(sin(x))dx:=π20πln(sin(x))dx0πxln(sin(x))dx:=π2(πln(2))J......(1)J:=0π(πx)ln(sin(x))dx:=π(πln(2))JJ:=π22ln(2).......(2)(2)(1):I=0.........

Question Number 152165    Answers: 2   Comments: 0

∫((sin x)/(sin 3x))dx

sinxsin3xdx

Question Number 152164    Answers: 1   Comments: 2

∫((2x+1)/(4−3x−x^2 ))dx

2x+143xx2dx

Question Number 152163    Answers: 1   Comments: 0

∫(((x^2 +5x+3)/(x^2 +3x+2)))dx

(x2+5x+3x2+3x+2)dx

Question Number 152161    Answers: 4   Comments: 0

∫cos (log x)dx

cos(logx)dx

  Pg 59      Pg 60      Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com