Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 65

Question Number 152164    Answers: 1   Comments: 2

∫((2x+1)/(4−3x−x^2 ))dx

2x+143xx2dx

Question Number 152163    Answers: 1   Comments: 0

∫(((x^2 +5x+3)/(x^2 +3x+2)))dx

(x2+5x+3x2+3x+2)dx

Question Number 152161    Answers: 4   Comments: 0

∫cos (log x)dx

cos(logx)dx

Question Number 152160    Answers: 1   Comments: 0

∫[(1/(log x))−(1/((log x)^2 ))]dx

[1logx1(logx)2]dx

Question Number 152147    Answers: 1   Comments: 0

Question Number 152142    Answers: 1   Comments: 0

∫_0 ^1 (x/((1−x+x^2 )^2 ))ln(ln(1/x))dx=−(γ/3)−(1/3)ln((6(√3))/π)+((π(√3))/(27))(5ln2π−6lnΓ((1/6)))

01x(1x+x2)2ln(ln1x)dx=γ313ln63π+π327(5ln2π6lnΓ(16))

Question Number 152141    Answers: 2   Comments: 0

∫_0 ^(+∞) (((sinx)^(2n+1) )/x)dx=(π/2^(2n+1) ) (((2n)),(n) )

0+(sinx)2n+1xdx=π22n+1(2nn)

Question Number 152140    Answers: 0   Comments: 0

I=∫_0 ^(2nπ) max(sinx, sin^(−1) (sinx))dx

I=02nπmax(sinx,sin1(sinx))dx

Question Number 152115    Answers: 1   Comments: 0

∫(dx/(asin x+bcos x))

dxasinx+bcosx

Question Number 152116    Answers: 3   Comments: 2

∫((sin x)/( (√(1+sin x))))dx

sinx1+sinxdx

Question Number 152112    Answers: 1   Comments: 0

If I_n =∫((cos nx)/(cos x))dx then 1_n =?

IfIn=cosnxcosxdxthen1n=?

Question Number 152111    Answers: 3   Comments: 0

∫tan^(−1) (sec x+tan x)dx

tan1(secx+tanx)dx

Question Number 152110    Answers: 3   Comments: 0

∫a^(mx) b^(nx) dx

amxbnxdx

Question Number 152106    Answers: 0   Comments: 0

∫ x^n cos(nx) dx

xncos(nx)dx

Question Number 152094    Answers: 1   Comments: 0

Question Number 152088    Answers: 2   Comments: 0

∫_0 ^(Π/2) ∣sinx−cosx∣ please help me out

0Π2sinxcosxpleasehelpmeout

Question Number 152186    Answers: 1   Comments: 0

∫x^n cos(nx) dx

xncos(nx)dx

Question Number 152047    Answers: 0   Comments: 0

∫_0 ^( ∞) ((x^2 +1)/( (√x^x ))) dx

0x2+1xxdx

Question Number 152105    Answers: 1   Comments: 0

∫_0 ^( ∞) (1/(⌊x+1⌋)) − (1/(x+1)) dx

01x+11x+1dx

Question Number 151983    Answers: 1   Comments: 0

∫_(−∞) ^(+∞) (((1−ix)/(1+ix)))^n (((1+ix)/(1−ix)))^m (1/(1+x^2 ))dx

+(1ix1+ix)n(1+ix1ix)m11+x2dx

Question Number 151958    Answers: 0   Comments: 0

f ( x ) = a −(√((x/(1+x)) )) , D_( f) : [ 0, ∞) , a≥ 1 , h (x ):=(√(( f^( −1) (a−ax ))/(f^( −1) ( a− 2x )))) D_( h) = ? ( D := Domain )

f(x)=ax1+x,Df:[0,),a1,h(x):=f1(aax)f1(a2x)Dh=?(D:=Domain)

Question Number 151951    Answers: 4   Comments: 1

nice ... mathematics S:= Σ_(n=1) ^∞ (( ζ (2n ))/(n . 16^( n) )) = ? ......■

nice...mathematicsS:=n=1ζ(2n)n.16n=?......

Question Number 151894    Answers: 1   Comments: 1

∫_0 ^a x (√((a^2 −x^2 )/(a^2 +x^2 )))

0axa2x2a2+x2

Question Number 151851    Answers: 1   Comments: 0

Question Number 151838    Answers: 0   Comments: 0

∫_0 ^( ∞) (((x^(log(⌊(⌊x⌋!)^((log(⌊x−1⌋!))^(−1) ) ⌋)+1) +1)^x )/(⌊x^(log(x^x )+1) ⌋!+1)) dx

0(xlog((x!)(log(x1!))1)+1+1)xxlog(xx)+1!+1dx

Question Number 151860    Answers: 1   Comments: 3

∫_1 ^5 ∣2−∣3−x∣∣dx

5123x∣∣dx

  Pg 60      Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68      Pg 69   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com