Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 67

Question Number 151341    Answers: 1   Comments: 0

∫_α ^β (dx/(x(√((x−α)(β−x) ))))=(π/( (√(αβ)))) where α,β >0

αβdxx(xα)(βx)=παβwhereα,β>0

Question Number 151340    Answers: 1   Comments: 0

Evaluate ∫_(−1) ^1 (((2x^(332) +x^(998) +4x^(1668) .sin x^(691) ))/(1+x^(666) ))dx

Evaluate11(2x332+x998+4x1668.sinx691)1+x666dx

Question Number 151287    Answers: 0   Comments: 2

I = ∫_(x=a) ^( x=b) (√(u^2 + v^2 x^2 − 2uvwx)) dx = ?

I=x=ax=bu2+v2x22uvwxdx=?

Question Number 151272    Answers: 0   Comments: 1

Question Number 151268    Answers: 0   Comments: 0

Σ_(r=1) ^∞ (((−1)^(r−1) )/r)[ψ((r/2)+(1/4))−ψ((r/2)−(1/4))]

r=1(1)r1r[ψ(r2+14)ψ(r214)]

Question Number 151246    Answers: 1   Comments: 0

find I=∫_0 ^(π/4) ln(cosx)dx and J=∫_0 ^(π/4) ln(sinx)dx

findI=0π4ln(cosx)dxandJ=0π4ln(sinx)dx

Question Number 151230    Answers: 4   Comments: 2

prove: ∫_0 ^( ∞) (( ln ( 1+x^( 2) ))/(x^( 2) (1+x^( 2) )))dx= π ln((e/2) ) ..

prove:0ln(1+x2)x2(1+x2)dx=πln(e2)..

Question Number 151221    Answers: 1   Comments: 2

∫((sin x)/(sin (x−a)))dx

sinxsin(xa)dx

Question Number 151220    Answers: 3   Comments: 0

show that ∫_0 ^(π/2) ((cos x)/(cos x+sin x+1))dx=(1/4)(π−2ln 2)

showthat0π2cosxcosx+sinx+1dx=14(π2ln2)

Question Number 151182    Answers: 0   Comments: 0

∫_0 ^( ∞) ((sin(2x)ln(x))/x) dx= m.∫_0 ^( ∞) (( ln(1+2x+x^2 ))/(x(ln^2 (x)+ π^( 2) ))) dx m=?....

0sin(2x)ln(x)xdx=m.0ln(1+2x+x2)x(ln2(x)+π2)dxm=?....

Question Number 151117    Answers: 0   Comments: 0

Question Number 151069    Answers: 0   Comments: 0

Calculate :: ∫_0 ^∞ ((sin (1145141919810893x))/(x(cosh x+cos x)))dx=(π/4)

Calculate::0sin(1145141919810893x)x(coshx+cosx)dx=π4

Question Number 151068    Answers: 0   Comments: 0

Calculate :: ∫_0 ^∞ ((√x)/((x^4 +14x^2 +1)^(5/4) ))dx=((Γ^2 ((3/4)))/(4(√(2π))))

Calculate::0x(x4+14x2+1)54dx=Γ2(34)42π

Question Number 151067    Answers: 0   Comments: 0

Calculate :: ∫_0 ^π sin (x/2)∙arctan((2/(sin x))−1)dx=(√2)ln(1+(√2))+(1−(1/( (√2))))π

Calculate::0πsinx2arctan(2sinx1)dx=2ln(1+2)+(112)π

Question Number 151066    Answers: 0   Comments: 0

Calculate :: ∫_0 ^(π/2) (arctan(((sin x)/2))+arctan(((cos 3x+15cos x)/8)))dx =(π^2 /4)−ln^2 (1+(√2))

Calculate::0π/2(arctan(sinx2)+arctan(cos3x+15cosx8))dx=π24ln2(1+2)

Question Number 151065    Answers: 0   Comments: 0

Calculate :: ∫_(−∞) ^(+∞) ((Γ(x))/(Γ(x+a)))sin (πx)dx=(2^(a−1) /(Γ(a)))π (a>0)

Calculate::+Γ(x)Γ(x+a)sin(πx)dx=2a1Γ(a)π(a>0)

Question Number 151064    Answers: 0   Comments: 0

Calculate :: ∫_0 ^π arctan(((2sin^2 x)/(1−2(√2)ϕcos x+2ϕ^2 )))dx=πarctan (√ϕ) (ϕ=(((√5)−1)/2))

Calculate::0πarctan(2sin2x122φcosx+2φ2)dx=πarctanφ(φ=512)

Question Number 151063    Answers: 0   Comments: 0

Calculate :: ∫_0 ^∞ ((ln(1+x))/((π^2 +ln^2 x)x))dx=γ

Calculate::0ln(1+x)(π2+ln2x)xdx=γ

Question Number 151062    Answers: 0   Comments: 0

Calculate :: ∫_0 ^∞ (dx/( (√(x^2 +x))∙((8x^2 +8x+1))^(1/4) ))=((Γ^2 ((1/8)))/(2^((11)/4) Γ((1/4))))

Calculate::0dxx2+x8x2+8x+14=Γ2(18)2114Γ(14)

Question Number 151061    Answers: 0   Comments: 0

Calculate :: ∫_0 ^(π/2) x∙cot x∙ln^2 cos xdx=(π^3 /(24))ln2+(π/6)ln^3 2−(3/(16))πζ(3)

Calculate::0π/2xcotxln2cosxdx=π324ln2+π6ln32316πζ(3)

Question Number 151060    Answers: 0   Comments: 0

Calculate :: ∫_0 ^∞ ((x(√x))/((x^2 +1)(1+ax)))dx=((a^2 −a+(√(2a)))/( (√2)a(1+a^2 )))π ,(a>0)

Calculate::0xx(x2+1)(1+ax)dx=a2a+2a2a(1+a2)π,(a>0)

Question Number 151037    Answers: 1   Comments: 0

Σ_(r=1,r≠s) ^n Σ_(s=1) ^n ((rs)/(n(n−1)))=^? (((n+1)(3n+2))/(12))

nr=1,rsns=1rsn(n1)=?(n+1)(3n+2)12

Question Number 151026    Answers: 1   Comments: 0

Σ_(n=0) ^∞ (0^n /(n!))=?

n=00nn!=?

Question Number 151053    Answers: 1   Comments: 0

Question Number 151017    Answers: 0   Comments: 0

∫_0 ^( ∞) (ln(x^(√x) −1))^(−x) dx = ?

0(ln(xx1))xdx=?

Question Number 150994    Answers: 0   Comments: 0

show that the improper integral lim_(B→∞) ∫_0 ^( B) sin(x)sin(x^2 )dx converges

showthattheimproperintegrallimB0Bsin(x)sin(x2)dxconverges

  Pg 62      Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68      Pg 69      Pg 70      Pg 71   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com