Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 69

Question Number 147884    Answers: 0   Comments: 0

∫_0 ^1 e^(−x) x^a dx a>0

01exxadxa>0

Question Number 147803    Answers: 0   Comments: 7

∫(((√(2−x^2 ))+(√(2+x^2 )))/( (√(4−x^4 ))))dx

2x2+2+x24x4dx

Question Number 147799    Answers: 1   Comments: 0

∫(((√(2−x^2 ))+(√(2+x^2 )))/( (√(4−x^2 ))))dx

2x2+2+x24x2dx

Question Number 147749    Answers: 1   Comments: 0

∫(((√(2−x^2 ))+(√(2+x^2 )))/( (√(4−x^4 ))))dx

2x2+2+x24x4dx

Question Number 147747    Answers: 0   Comments: 0

Question Number 147746    Answers: 1   Comments: 0

Question Number 147683    Answers: 1   Comments: 0

let F(x)=(1/((x+1)^5 (2x−3)^4 )) 1) find ∫ F(x)dx 2)en deduire la decomposition de F en element simples

letF(x)=1(x+1)5(2x3)41)findF(x)dx2)endeduireladecompositiondeFenelementsimples

Question Number 147682    Answers: 0   Comments: 0

decompose F(x)=(1/((x^n −1)(x^2 +x+1))) dans C(x) puis dans R(x)

decomposeF(x)=1(xn1)(x2+x+1)dansC(x)puisdansR(x)

Question Number 147680    Answers: 0   Comments: 2

find by residus ∫_0 ^∞ ((cos(2x))/((x^2 −x+1)^3 ))dx

findbyresidus0cos(2x)(x2x+1)3dx

Question Number 147670    Answers: 1   Comments: 0

Question Number 147576    Answers: 1   Comments: 0

(1):: Σ_(i=1) ^n Σ_(j=1) ^n ∣i−j∣=? (2):: Σ_(i=1) ^n Σ_(j=i) ^n (1/j)=? (3):: Σ_(i=1) ^n^2 [(√i)]=?

(1)::ni=1nj=1ij∣=?(2)::ni=1nj=i1j=?(3)::n2i=1[i]=?

Question Number 147487    Answers: 1   Comments: 0

(a , 2a +1 ]∩[ a^( 2) −a , a^( 2) + 4a +1 )≠ ∅ a ∈ ?

(a,2a+1][a2a,a2+4a+1)a?

Question Number 147477    Answers: 1   Comments: 1

Question Number 147399    Answers: 0   Comments: 0

∫_0 ^(π/2) (e^(2arctg(u)) /( (√u)))

0π2e2arctg(u)u

Question Number 147310    Answers: 1   Comments: 1

Question Number 147309    Answers: 2   Comments: 0

Question Number 147287    Answers: 2   Comments: 0

...Advanced Calculus... Calculate :: { (( i :: I := ∫_0 ^( 1) ln(x).ln(1+x) dx)),(( ii :: J := ∫_0 ^( 1) Li_( 2) ( 1− x^( 2) ) =?)) :} Note:: Li_2 (x) = Σ_(n=1) ^( ∞) (x^( n) /n^( 2) ) ........ ■ .... m.n....

...AdvancedCalculus...Calculate::{i::I:=01ln(x).ln(1+x)dxii::J:=01Li2(1x2)=?Note::Li2(x)=n=1xnn2............m.n....

Question Number 147275    Answers: 1   Comments: 0

f(x)=∫_0 ^x e^(t−(t^2 /2)) dt show that ∫_0 ^1 f(t)dt=(√e)−1

f(x)=0xett22dtshowthat01f(t)dt=e1

Question Number 147206    Answers: 0   Comments: 0

calculste ∫_0 ^1 (√(1+x^4 ))dx

calculste011+x4dx

Question Number 147203    Answers: 1   Comments: 0

find U_n =∫_0 ^∞ (e^(−nx^2 ) /(x^2 +n^2 ))dx (n≥1) nature of ΣU_n and Σ nU_n

findUn=0enx2x2+n2dx(n1)natureofΣUnandΣnUn

Question Number 147202    Answers: 0   Comments: 0

find ∫_0 ^1 ((√x)/( (√(x^2 +3))+(√(2x^2 +1))))dx

find01xx2+3+2x2+1dx

Question Number 147166    Answers: 2   Comments: 0

∫_R e^(ixt) e^(−t^2 ) dt..

Reixtet2dt..

Question Number 147163    Answers: 0   Comments: 0

Question Number 147101    Answers: 1   Comments: 0

find U_n =∫_0 ^1 (1+x^2 )(1+x^4 )....(1+x^2^n )dx

findUn=01(1+x2)(1+x4)....(1+x2n)dx

Question Number 147061    Answers: 2   Comments: 0

∫_( 0 ) ^( ∞) (x^a /((1+x^3 ))) (dx/x) =? 0<a<3

0xa(1+x3)dxx=?0<a<3

Question Number 147060    Answers: 1   Comments: 0

∫_0 ^(π/2) e^(2x) (√(tanx))dx

0π2e2xtanxdx

  Pg 64      Pg 65      Pg 66      Pg 67      Pg 68      Pg 69      Pg 70      Pg 71      Pg 72      Pg 73   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com