Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 70

Question Number 146836    Answers: 0   Comments: 0

Σ_(n=1) ^∞ (1/(ϕ^( n) F_n )) =?

n=11φnFn=?

Question Number 146835    Answers: 2   Comments: 0

calculate ∫_0 ^∞ (dx/((x^2 +3)^2 (x^2 +4)^2 ))

calculate0dx(x2+3)2(x2+4)2

Question Number 146791    Answers: 1   Comments: 0

∫(x/(1+cos^2 (x)))dx

x1+cos2(x)dx

Question Number 146790    Answers: 1   Comments: 0

∫(1/x) e^(−(1/x^2 )) dx

1xe1x2dx

Question Number 146767    Answers: 1   Comments: 0

Σ_(n=0) ^∞ (((−1)^n )/(n+1))(1+(1/3)+...+(1/(2n+1)))=?

n=0(1)nn+1(1+13+...+12n+1)=?

Question Number 146756    Answers: 2   Comments: 0

∫_( 0) ^( 1) t^2 + 1 dt

10t2+1dt

Question Number 146752    Answers: 1   Comments: 0

∫_( 0) ^( 1) t^2 + (1/2)t −6dx

10t2+12t6dx

Question Number 146736    Answers: 1   Comments: 0

1: S:= Σ_(n=1) ^∞ (((−1)^( n−1) )/(n.2^( n) )) =? 2: A:= Σ(((−1)^( n−1) )/(n^2 . 2^( n) )) =?

1:S:=n=1(1)n1n.2n=?2:A:=Σ(1)n1n2.2n=?

Question Number 146735    Answers: 2   Comments: 0

Σ_(n=1) ^∞ ((1+(1/2)+(1/3)+...+(1/n))/((n+1)(n+2)))=?

n=11+12+13+...+1n(n+1)(n+2)=?

Question Number 146697    Answers: 0   Comments: 0

∀t≥−1,F(t)=(2/π)∫_0 ^(π/2) (√(1+tcos^2 ϕ))dϕ 1) Show that ∀t≤−1 F(t)=(√(1+t))F(−(1/(1+t))) 2) show that if 0≤t_1 , 0≤F(t_2 )−F(t_1 )≤((t_2 −t_1 )/4)

t1,F(t)=2π0π21+tcos2φdφ1)Showthatt1F(t)=1+tF(11+t)2)showthatif0t1,0F(t2)F(t1)t2t14

Question Number 146669    Answers: 1   Comments: 0

∫_0 ^π (a−e^(−ix) )^n (a−e^(ix) )^n cos(nx)dx

0π(aeix)n(aeix)ncos(nx)dx

Question Number 146619    Answers: 1   Comments: 0

solve :: ( x ∈ R ) [ x ] = [ x^( 2) − x −6 ] note:: [x ] := max { q ∈ Z ∣ q ≤ x }

solve::(xR)[x]=[x2x6]note::[x]:=max{qZqx}

Question Number 146597    Answers: 5   Comments: 0

∫ ((cos 5x+cos 4x)/(1−2cos 3x)) dx =? ∫ ((√(tan x))/(sin 2x)) dx =? ∫ (dx/( (√(cos^3 x sin^5 x)))) =?

cos5x+cos4x12cos3xdx=?tanxsin2xdx=?dxcos3xsin5x=?

Question Number 146584    Answers: 0   Comments: 0

......nice ... ... ... calculus...... Ω= ∫_0 ^( 4) x^( 2) d (⌊x+⌊x +⌊x+⌊x⌋⌋⌋)=?

......nice.........calculus......Ω=04x2d(x+x+x+x)=?

Question Number 146582    Answers: 1   Comments: 0

∫ tan^4 x cos^2 x dx =?

tan4xcos2xdx=?

Question Number 146577    Answers: 2   Comments: 1

Question Number 146455    Answers: 1   Comments: 0

Given that F(x) = ∫_0 ^x (t^2 /( (√(t^2 +1))))dt Show that F(x) is an increasing function

GiventhatF(x)=0xt2t2+1dtShowthatF(x)isanincreasingfunction

Question Number 146429    Answers: 1   Comments: 1

Σ_(n=1) ^∞ (n∙ln((2n+1)/(2n−1))−1)=?

n=1(nln2n+12n11)=?

Question Number 146361    Answers: 2   Comments: 0

find ∫(1/(x^n +1))dx for n∈N

find1xn+1dxfornN

Question Number 146307    Answers: 1   Comments: 0

S_n =Σ_(k=1) ^n (( 1)/(k (k+2)k+4))) lim_( n→∞) ( S_( n) ) = ?

Sn=nk=11k(k+2)k+4)limn(Sn)=?

Question Number 146290    Answers: 0   Comments: 5

Question Number 146181    Answers: 4   Comments: 0

Σ_(n=0) ^∞ (1/(2^( n) (n+1 ) ( n + 2 ))) =?

n=012n(n+1)(n+2)=?

Question Number 146155    Answers: 0   Comments: 2

lim_(n→∞) (Arcsin(x))^( n) =0 ∴ x ∈ ? Q : mr liberty

limn(Arcsin(x))n=0x?Q:mrliberty

Question Number 146147    Answers: 2   Comments: 0

Υ = ∫ (dx/(x^4 (√(x^2 −a^2 )))) =?

Υ=dxx4x2a2=?

Question Number 146110    Answers: 2   Comments: 0

∫((x+1)/(2x^2 +x+1))dx

x+12x2+x+1dx

Question Number 146108    Answers: 0   Comments: 0

Solve in Z[X] 1) XP ′ ≡ −1 mod(X^4 +1) 2) X^3 P −P ′ ≡ 1−X^2 mod(X^4 +1) 3) P^2 −X^3 P−X^2 ≡ 0 mod(X^2 +2)

SolveinZ[X]1)XP1mod(X4+1)2)X3PP1X2mod(X4+1)3)P2X3PX20mod(X2+2)

  Pg 65      Pg 66      Pg 67      Pg 68      Pg 69      Pg 70      Pg 71      Pg 72      Pg 73      Pg 74   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com