Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 72

Question Number 144787    Answers: 1   Comments: 0

Q :: # Calculus # If : 𝛗 ( n ) : = ∫_0 ^( 1) (( x^( 2n) )/(1 + x^( 2) )) dx then find the value of :: S := Ξ£_(n=1) ^∞ ((( βˆ’1 )^( n) 𝛗 ( n ))/n) = ? m.n.july.1970

You can't use 'macro parameter character #' in math modeIf:Ο•(n):=∫01x2n1+x2dxthenfindthevalueof::S:=βˆ‘βˆžn=1(βˆ’1)nΟ•(n)n=?m.n.july.1970

Question Number 144782    Answers: 0   Comments: 0

Question Number 144771    Answers: 0   Comments: 0

A region is enclosed by curves x^2 =4y, x^2 =βˆ’4y, x=4 & x=βˆ’4 V_1 is the volume of the solid obtained by rotating the above region round the yβˆ’axis. Another regions consists of points (x,y) satisfying x^2 +y^2 ≀16, x^2 +(yβˆ’2)^2 β‰₯4 and x^2 +(y+2)^2 β‰₯4 ,V_2 is the volume of the solid obtained by rotating this region round the yβˆ’axis Then V_1 =...

Aregionisenclosedbycurvesx2=4y,x2=βˆ’4y,x=4&x=βˆ’4V1isthevolumeofthesolidobtainedbyrotatingtheaboveregionroundtheyβˆ’axis.Anotherregionsconsistsofpoints(x,y)satisfyingx2+y2β©½16,x2+(yβˆ’2)2β©Ύ4andx2+(y+2)2β©Ύ4,V2isthevolumeofthesolidobtainedbyrotatingthisregionroundtheyβˆ’axisThenV1=...

Question Number 144764    Answers: 1   Comments: 0

Question Number 144763    Answers: 0   Comments: 0

Question Number 144756    Answers: 1   Comments: 1

Question Number 144738    Answers: 1   Comments: 0

On souhaite calculer I=∫_0 ^∞ ((sint)/t)dt. (1) On de^ finit la fonction F(x)=∫_0 ^∞ e^(βˆ’tx) ((sint)/t)dt. (a) De^ terminer le domaine de de^ finition de f sur R. (b) Montrer que F est de classe C^1 sur R_+ ^βˆ— et calculer F β€²(x). (c) Limite de F en +∞ ? Conse^ quence ? (2) On note Si(t)=∫_0 ^t ((sinu)/u)du pour tout re^ el t. (a) Montrer que G(x)=∫_0 ^∞ e^(βˆ’tx) Si(t)dt est de^ finie sur R_+ ^βˆ— . (b) Montrer que xG(x)β†’I quand xβ†’0^+ . (c) Au moyen dβ€²une inte^ gration par parties, montrer que F est continue en 0. (3) Calculer I.

OnsouhaitecalculerI=∫0∞sinttdt.(1)OndefinitΒ΄lafonctionF(x)=∫0∞eβˆ’txsinttdt.(a)DeterminerΒ΄ledomainededefinitionΒ΄defsurR.(b)MontrerqueFestdeclasseC1surR+βˆ—etcalculerFβ€²(x).(c)LimitedeFen+∞?ConsequenceΒ΄?(2)OnnoteSi(t)=∫0tsinuudupourtoutreelΒ΄t.(a)MontrerqueG(x)=∫0∞eβˆ’txSi(t)dtestdefinieΒ΄surR+βˆ—.(b)MontrerquexG(x)β†’Iquandxβ†’0+.(c)Aumoyendβ€²uneintegrationΒ΄parparties,montrerqueFestcontinueen0.(3)CalculerI.

Question Number 144721    Answers: 0   Comments: 0

......... Nice ......βˆ—βˆ—βˆ—......Calculus......... f ( x ) : = [ tan (x) + cot (x) ] R_( f ) = ? Hint:: [ x ] := Max { m ∈Z ∣ m ≀ x }

.........Nice......βˆ—βˆ—βˆ—......Calculus.........f(x):=[tan(x)+cot(x)]Rf=?Hint::[x]:=Max{m∈Z∣mβ©½x}

Question Number 144720    Answers: 1   Comments: 0

.....calculus..... Ξ© := ∫_0 ^( ∞) ((sech(Ο€x))/(1+4x^( 2) )) dx =^? (1/2) Ln(2)

.....calculus.....Ξ©:=∫0∞sech(Ο€x)1+4x2dx=?12Ln(2)

Question Number 144705    Answers: 1   Comments: 0

∫ (x^(nβˆ’1) /(x^(3n+1) (x^n βˆ’a))) dx ?

∫xnβˆ’1x3n+1(xnβˆ’a)dx?

Question Number 144691    Answers: 1   Comments: 0

Question Number 144662    Answers: 1   Comments: 0

........... Calculus........... In AB^Ξ” C : B^ = 2 C^ , a = Ξ» b then specify the limits of the changes β€² Ξ» β€² :

...........Calculus...........InABCΞ”:B^=2C^,a=Ξ»bthenspecifythelimitsofthechangesβ€²Ξ»β€²:

Question Number 144638    Answers: 1   Comments: 0

Triangle AOC inscribed in the region cut from the parabola y=x^2 by the line y=a^2 .Find the limit of ratio of the area of the triangle to the area of the parabolic region as a approaches zero

TriangleAOCinscribedintheregioncutfromtheparabolay=x2bytheliney=a2.Findthelimitofratiooftheareaofthetriangletotheareaoftheparabolicregionasaapproacheszero

Question Number 144636    Answers: 1   Comments: 0

Find the areas of the regions enclosed by the lines and curves x=y^2 βˆ’1 and x=∣y∣(√(1βˆ’y^2 ))

Findtheareasoftheregionsenclosedbythelinesandcurvesx=y2βˆ’1andx=∣y∣1βˆ’y2

Question Number 144597    Answers: 2   Comments: 0

let Ο•(x)=(1/(3+cosx)) developp f at fourier serie

letφ(x)=13+cosxdeveloppfatfourierserie

Question Number 144530    Answers: 2   Comments: 0

∫_0 ^( Ο€/2) ((cos^2 x)/((2cos x+sin x)^2 )) dx =?

∫0Ο€/2cos2x(2cosx+sinx)2dx=?

Question Number 144528    Answers: 1   Comments: 0

Find the volume of the region bounded by the elliptic paraboloid z = 4βˆ’x^2 βˆ’(1/4)y^2 and the plane z=0

Findthevolumeoftheregionboundedbytheellipticparaboloidz=4βˆ’x2βˆ’14y2andtheplanez=0

Question Number 144527    Answers: 2   Comments: 0

..... Calculus (I )..... P:= ((∫_(0 ) ^( (Ο€/2)) ( xcos(x)+1 )e^( sin(x)) dx )/(∫_0 ^( (Ο€/2)) ( xsin(x) βˆ’1 )e^( cos(x )) dx))=?

.....Calculus(I).....P:=∫0Ο€2(xcos(x)+1)esin(x)dx∫0Ο€2(xsin(x)βˆ’1)ecos(x)dx=?

Question Number 144450    Answers: 3   Comments: 0

.........Calculus(I)......... Lim_( x β†’ 0) ((1 βˆ’cos(xcos((x/2)).cos((x/4))cos((x/8))))/x^( 2) )=?

.........Calculus(I).........Limxβ†’01βˆ’cos(xcos(x2).cos(x4)cos(x8))x2=?

Question Number 144432    Answers: 1   Comments: 0

∫_0 ^∝ t^(nβˆ’2) costdt

∫0∝tnβˆ’2costdt

Question Number 144431    Answers: 1   Comments: 0

∫tan x sin^2 x cos^3 x cot^4 x dx =?

∫tanxsin2xcos3xcot4xdx=?

Question Number 144419    Answers: 1   Comments: 0

...Advanced ....Calculus... Without using the Feynmanβ€²s trick , Find the value of :: I :=∫_0 ^( 1) ((Log (1+ x^( 2) ))/(1 +x)) dx=? m.n...

...Advanced....Calculus...WithoutusingtheFeynmanβ€²strick,Findthevalueof::I:=∫01Log(1+x2)1+xdx=?m.n...

Question Number 144402    Answers: 1   Comments: 2

Question Number 144409    Answers: 2   Comments: 0

∫ (dx/((x+3)(√(1βˆ’x^2 )))) ?

∫dx(x+3)1βˆ’x2?

Question Number 144348    Answers: 1   Comments: 3

Question Number 144323    Answers: 1   Comments: 0

Ξ£_(i=1) ^n (((βˆ’1)^(n+1) )/n)=?

βˆ‘ni=1(βˆ’1)n+1n=?

  Pg 67      Pg 68      Pg 69      Pg 70      Pg 71      Pg 72      Pg 73      Pg 74      Pg 75      Pg 76   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com