Question and Answers Forum |
IntegrationQuestion and Answers: Page 72 |
Q :: # Calculus # If : π ( n ) : = β«_0 ^( 1) (( x^( 2n) )/(1 + x^( 2) )) dx then find the value of :: S := Ξ£_(n=1) ^β ((( β1 )^( n) π ( n ))/n) = ? m.n.july.1970 |
![]() |
A region is enclosed by curves x^2 =4y, x^2 =β4y, x=4 & x=β4 V_1 is the volume of the solid obtained by rotating the above region round the yβaxis. Another regions consists of points (x,y) satisfying x^2 +y^2 β€16, x^2 +(yβ2)^2 β₯4 and x^2 +(y+2)^2 β₯4 ,V_2 is the volume of the solid obtained by rotating this region round the yβaxis Then V_1 =... |
![]() |
![]() |
![]() |
On souhaite calculer I=β«_0 ^β ((sint)/t)dt. (1) On de^ finit la fonction F(x)=β«_0 ^β e^(βtx) ((sint)/t)dt. (a) De^ terminer le domaine de de^ finition de f sur R. (b) Montrer que F est de classe C^1 sur R_+ ^β et calculer F β²(x). (c) Limite de F en +β ? Conse^ quence ? (2) On note Si(t)=β«_0 ^t ((sinu)/u)du pour tout re^ el t. (a) Montrer que G(x)=β«_0 ^β e^(βtx) Si(t)dt est de^ finie sur R_+ ^β . (b) Montrer que xG(x)βI quand xβ0^+ . (c) Au moyen dβ²une inte^ gration par parties, montrer que F est continue en 0. (3) Calculer I. |
......... Nice ......βββ......Calculus......... f ( x ) : = [ tan (x) + cot (x) ] R_( f ) = ? Hint:: [ x ] := Max { m βZ β£ m β€ x } |
.....calculus..... Ξ© := β«_0 ^( β) ((sech(Οx))/(1+4x^( 2) )) dx =^? (1/2) Ln(2) |
β« (x^(nβ1) /(x^(3n+1) (x^n βa))) dx ? |
![]() |
........... Calculus........... In AB^Ξ C : B^ = 2 C^ , a = Ξ» b then specify the limits of the changes β² Ξ» β² : |
Triangle AOC inscribed in the region cut from the parabola y=x^2 by the line y=a^2 .Find the limit of ratio of the area of the triangle to the area of the parabolic region as a approaches zero |
Find the areas of the regions enclosed by the lines and curves x=y^2 β1 and x=β£yβ£(β(1βy^2 )) |
let Ο(x)=(1/(3+cosx)) developp f at fourier serie |
β«_0 ^( Ο/2) ((cos^2 x)/((2cos x+sin x)^2 )) dx =? |
Find the volume of the region bounded by the elliptic paraboloid z = 4βx^2 β(1/4)y^2 and the plane z=0 |
..... Calculus (I )..... P:= ((β«_(0 ) ^( (Ο/2)) ( xcos(x)+1 )e^( sin(x)) dx )/(β«_0 ^( (Ο/2)) ( xsin(x) β1 )e^( cos(x )) dx))=? |
.........Calculus(I)......... Lim_( x β 0) ((1 βcos(xcos((x/2)).cos((x/4))cos((x/8))))/x^( 2) )=? |
β«_0 ^β t^(nβ2) costdt |
β«tan x sin^2 x cos^3 x cot^4 x dx =? |
...Advanced ....Calculus... Without using the Feynmanβ²s trick , Find the value of :: I :=β«_0 ^( 1) ((Log (1+ x^( 2) ))/(1 +x)) dx=? m.n... |
![]() |
β« (dx/((x+3)(β(1βx^2 )))) ? |
![]() |
Ξ£_(i=1) ^n (((β1)^(n+1) )/n)=? |