
|
|

|
All Questions Topic List |
IntegrationQuestion and Answers: Page 73 |
Question Number 144432 Answers: 1 Comments: 0
|
∫_0 ^∝ t^(n−2) costdt
|
|
Question Number 144431 Answers: 1 Comments: 0
|
∫tan x sin^2 x cos^3 x cot^4 x dx =?
|
|
Question Number 144419 Answers: 1 Comments: 0
|
...Advanced ....Calculus...
Without using the Feynman′s trick ,
Find the value of ::
I :=∫_0 ^( 1) ((Log (1+ x^( 2) ))/(1 +x)) dx=?
m.n...
|
|
Question Number 144402 Answers: 1 Comments: 2
|
|
Question Number 144409 Answers: 2 Comments: 0
|
∫ (dx/((x+3)(√(1−x^2 )))) ?
|
|
Question Number 144348 Answers: 1 Comments: 3
|
|
Question Number 144323 Answers: 1 Comments: 0
|
Σ_(i=1) ^n (((−1)^(n+1) )/n)=?
|
|
Question Number 144322 Answers: 1 Comments: 0
|
Σ_(n=0) ^∞ (((2n)!!)/((2n+1)!!(n+1)))x^(2n+2) =?..........∣x∣≤1
|
|
Question Number 144248 Answers: 1 Comments: 0
|
|
Question Number 144245 Answers: 2 Comments: 0
|
∫_0 ^1 (x^(2n) /((x−1)^n ))dx
|
|
Question Number 144231 Answers: 1 Comments: 0
|
.....Nice ...Calculus
if ::
ϕ ( n ) := ∫_0 ^( 1) (x^( n) /(1 + x)) dx
then :: Σ_(n=1) ^( ∞) (((−1)^(n−1) ϕ (n ))/n) =?
........
|
|
Question Number 144186 Answers: 2 Comments: 0
|
Estimate ∫_0 ^(0.5) (√(1+x^4 )) dx
with an error 0.0001
|
|
Question Number 144187 Answers: 1 Comments: 0
|
∫_0 ^(+∞) (u^2 /(u^8 +2u^4 +1))du
|
|
Question Number 144168 Answers: 1 Comments: 0
|
|
Question Number 144143 Answers: 1 Comments: 0
|
∫_(1/a) ^a ((arctg(x))/x)dx=???
|
|
Question Number 144142 Answers: 1 Comments: 0
|
∫ ((√(cos x+(√(cos x+(√(cos x+(√(cos x+(√(...))))))))))/(sin x)) dx
|
|
Question Number 144116 Answers: 0 Comments: 0
|
|
Question Number 144064 Answers: 2 Comments: 0
|
|
Question Number 144062 Answers: 0 Comments: 0
|
|
Question Number 144053 Answers: 1 Comments: 0
|
........ Calculus........
Ω:=lim(1/π)∫_0 ^( 2π) (Σ_(k=1) ^n ((sin(kx))/( (√2^k ))))^2 dx=?
|
|
Question Number 144052 Answers: 1 Comments: 0
|
Evaluate
∫ ((√x)/(sinh x)) dx
|
|
Question Number 144042 Answers: 3 Comments: 0
|
|
Question Number 144038 Answers: 0 Comments: 0
|
|
Question Number 144000 Answers: 1 Comments: 0
|
prove that
∀_m ∈N , a_k ,b_k ∈R
cos^(2m) x =Σ_(k=1) ^m a_k cos 2kx
cos^(2m−1) x=Σ_(k=1) ^m b_k cos (2k−1)x
and find expr of a_k ,b_k in terms of k.
|
|
Question Number 143952 Answers: 3 Comments: 0
|
|
Question Number 143932 Answers: 4 Comments: 0
|
|
Pg 68
Pg 69
Pg 70
Pg 71
Pg 72
Pg 73
Pg 74
Pg 75
Pg 76
Pg 77
|
Terms of Service |
Privacy Policy |
Contact: info@tinkutara.com |