Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 74

Question Number 143638    Answers: 0   Comments: 2

......Calculus.... 𝛗:=^? ∫_0 ^( 1) ((ln(1βˆ’x)ln(x)(ln(((1βˆ’x)/x))))/x) dx m.n....

......Calculus....Ο•:=?∫01ln(1βˆ’x)ln(x)(ln(1βˆ’xx))xdxm.n....

Question Number 143628    Answers: 1   Comments: 0

∫_x ^∝ t^(Ξ±βˆ’1) e^(it) dt=??

∫x∝tΞ±βˆ’1eitdt=??

Question Number 143622    Answers: 1   Comments: 0

∫_0 ^∝ e^(2arctg(t^2 )) dt

∫0∝e2arctg(t2)dt

Question Number 143603    Answers: 2   Comments: 0

.....Calculus..... Ξ©:=Ξ£_(n=1) ^∞ (1/(n^k (1+n))) (kβ‰₯ 2) ......

.....Calculus.....Ξ©:=βˆ‘βˆžn=11nk(1+n)(kβ©Ύ2)......

Question Number 143588    Answers: 3   Comments: 0

Question Number 143570    Answers: 1   Comments: 0

Question Number 143715    Answers: 0   Comments: 0

∫_0 ^(Ο€/4) tanxβˆ™Li(tan^2 x)dx

∫0Ο€4tanxβ‹…Li(tan2x)dx

Question Number 143556    Answers: 0   Comments: 0

∫_0 ^∞ (dx/(x^α (lnx)^β ))

∫0∞dxxα(lnx)β

Question Number 143508    Answers: 3   Comments: 0

..........Calculus........ i: 𝛗_1 :=∫_0 ^( 1) ((ln^2 (1βˆ’x).ln(x))/x)dx ii: 𝛗_2 := ∫_0 ^( 1) ((ln^2 (x).ln(1βˆ’x))/x) dx iii : 𝛗_3 :=∫_0 ^( 1) ((ln^2 (x).ln(1+x))/x)dx

..........Calculus........i:Ο•1:=∫01ln2(1βˆ’x).ln(x)xdxii:Ο•2:=∫01ln2(x).ln(1βˆ’x)xdxiii:Ο•3:=∫01ln2(x).ln(1+x)xdx

Question Number 143506    Answers: 1   Comments: 0

∫_1 ^∞ (1/(e^(βˆ’x) +e^x )) dx=?

∫∞11eβˆ’x+exdx=?

Question Number 143502    Answers: 0   Comments: 0

Question Number 143487    Answers: 0   Comments: 0

find ∫_0 ^1 ((log(1+t^2 ))/(1+t))dt

find∫01log(1+t2)1+tdt

Question Number 143477    Answers: 0   Comments: 0

∫_0 ^1 e^(2arctg(t^2 )) dt

∫01e2arctg(t2)dt

Question Number 143474    Answers: 0   Comments: 0

for all positive integral., u_(n+1) =u_n (u_(nβˆ’1) ^2 βˆ’2)βˆ’u_n u_n =2 and u_1 =2(1/2) prove that : 3log_2 [u_n ]=2^n βˆ’1(βˆ’1)^n where [x] is the integral part of x

forallpositiveintegral.,un+1=un(unβˆ’12βˆ’2)βˆ’unun=2andu1=212provethat:3log2[un]=2nβˆ’1(βˆ’1)nwhere[x]istheintegralpartofx

Question Number 143443    Answers: 1   Comments: 1

Question Number 143545    Answers: 2   Comments: 0

calculate ∫_0 ^∞ ((logx)/(x^6 +1))dx

calculate∫0∞logxx6+1dx

Question Number 143399    Answers: 2   Comments: 0

∫_0 ^(2Ο€) (dx/((1βˆ’ksinx)^2 ))

∫02Ο€dx(1βˆ’ksinx)2

Question Number 143312    Answers: 1   Comments: 0

∫_0 ^∞ ((sin^4 x)/x^4 )dx=(Ο€/3)

∫0∞sin4xx4dx=Ο€3

Question Number 143248    Answers: 1   Comments: 1

∫(dx/(x^2 βˆ’4x+1))

∫dxx2βˆ’4x+1

Question Number 143230    Answers: 2   Comments: 0

Σ_(n=1) ^∞ (x^(3n+1) /(3n+1))=?

βˆ‘βˆžn=1x3n+13n+1=?

Question Number 143219    Answers: 0   Comments: 1

Question Number 143210    Answers: 1   Comments: 0

∫_0 ^1 ((7^(x+1) +3^(x+1) )/(x+1))dx

∫017x+1+3x+1x+1dx

Question Number 143192    Answers: 0   Comments: 0

Question Number 143190    Answers: 1   Comments: 2

∫_R (e^(its) /(s+3))ds

∫Reitss+3ds

Question Number 143178    Answers: 0   Comments: 2

∫_1 ^∞ ((x2^x +7)/(3^x +lnx+1))dx

∫1∞x2x+73x+lnx+1dx

Question Number 143163    Answers: 0   Comments: 0

∫_(1/x) ^x^2 (dt/( (√(1+t^3 )))) =?

∫1xx2dt1+t3=?

  Pg 69      Pg 70      Pg 71      Pg 72      Pg 73      Pg 74      Pg 75      Pg 76      Pg 77      Pg 78   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com