Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 76

Question Number 142656    Answers: 2   Comments: 0

∫_(−π) ^π ((xsin x)/(1+x^2 ))dx=?

ππxsinx1+x2dx=?

Question Number 142643    Answers: 1   Comments: 0

∫_0 ^(π/2) ((cos^2 t)/(sint))dt

0π2cos2tsintdt

Question Number 142629    Answers: 1   Comments: 0

Σ_(n=1) ^∞ (−1)^n ∙((2n−1)/((2n)!))∙((π/2))^(2n) =Σ_(n=1) ^∞ ((2n−1)/((2n)!))∙(−((π/2))^2 )^n =(2xD−1)∣_(x=π/2) Σ_(n=1) ^∞ (((−x^2 )^n )/((2n)!)) =(2xD−1)∣_(x=π/2) [Σ_(n=0) ^∞ (((−x^2 )^n )/((2n)!))−1] =(2xD−1)∣_(x=π/2) (cos x−1) =(−2xsin x−cos x+1)∣_(x=π/2) =1−π where is wrong?

n=1(1)n2n1(2n)!(π2)2n=n=12n1(2n)!((π2)2)n=(2xD1)x=π/2n=1(x2)n(2n)!=(2xD1)x=π/2[n=0(x2)n(2n)!1]=(2xD1)x=π/2(cosx1)=(2xsinxcosx+1)x=π/2=1πwhereiswrong?

Question Number 142595    Answers: 1   Comments: 0

Prove :: sec^2 x=4Σ_(n=0) ^∞ {(1/([(2n+1)π−2x]^2 ))+(1/([(2n+1)π+2x]^2 ))}

Prove::sec2x=4n=0{1[(2n+1)π2x]2+1[(2n+1)π+2x]2}

Question Number 142573    Answers: 2   Comments: 0

Question Number 142545    Answers: 1   Comments: 0

nice .....integral Ω:=∫_(−∞) ^( +∞) (dx/((x^2 +π^2 )cosh(x))) =? .....

nice.....integralΩ:=+dx(x2+π2)cosh(x)=?.....

Question Number 142516    Answers: 0   Comments: 0

∫(dx/((−lnx)^(1/x) ))

dx(lnx)1x

Question Number 142505    Answers: 0   Comments: 0

Question Number 142504    Answers: 1   Comments: 0

Question Number 142488    Answers: 2   Comments: 0

∫_0 ^1 (t^(k−1) /(1+t^2 ))dt

01tk11+t2dt

Question Number 142475    Answers: 2   Comments: 0

Question Number 142469    Answers: 1   Comments: 0

...... Calculus ..... Evaluate: ∫_0 ^( 1) (((log((1/x)))/(1−x)))^3 dx=??

......Calculus.....Evaluate:01(log(1x)1x)3dx=??

Question Number 142457    Answers: 1   Comments: 0

I=∫(dx/( (√(a^2 −(x+(1/x))))))

I=dxa2(x+1x)

Question Number 142461    Answers: 2   Comments: 1

Question Number 142438    Answers: 1   Comments: 0

∫_0 ^1 ((1−x)/(lnx))dx how many tricks solve this

011xlnxdxhowmanytrickssolvethis

Question Number 142362    Answers: 1   Comments: 0

prove that: ∫_0 ^( ∞) ln((1/x)).j_0 (x)dx:= γ+ln(2) Hint:(1) j_0 (x)=Σ_(n=0) ^∞ (((−1)^n x^(2n) )/(2^(2n) .Γ^2 (n+1))) (Bessel function) Hint:2 L [ j_0 (x)]=(1/( (√(1+s^2 ))))

provethat:0ln(1x).j0(x)dx:=γ+ln(2)Hint:(1)j0(x)=n=0(1)nx2n22n.Γ2(n+1)(Besselfunction)Hint:2L[j0(x)]=11+s2

Question Number 142358    Answers: 1   Comments: 0

∫_0 ^∞ x^(n−1) log_e (1−x)dx

0xn1loge(1x)dx

Question Number 142347    Answers: 1   Comments: 1

calculate ∫_0 ^∞ ((x^2 logx)/(x^6 +1))dx

calculate0x2logxx6+1dx

Question Number 142346    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((log(1+x^3 ))/(1+x^4 ))dx

calculate0log(1+x3)1+x4dx

Question Number 142344    Answers: 0   Comments: 3

𝛗:=∫^( e) _(1/e) {(1/(ln(x)))+ln(ln(x))}dx

ϕ:=1ee{1ln(x)+ln(ln(x))}dx

Question Number 142338    Answers: 2   Comments: 0

∫_0 ^∞ ((sinx)/x^μ )dx =?

0sinxxμdx=?

Question Number 142290    Answers: 1   Comments: 0

evaluate: Θ:=Σ_(n=1) ^∞ ((ζ(n+1)−1)/(n+1)) =?

evaluate:Θ:=n=1ζ(n+1)1n+1=?

Question Number 142285    Answers: 2   Comments: 0

L(((1+2bt)/( (√t)))e^(bt) )(s)=?

L(1+2bttebt)(s)=?

Question Number 142273    Answers: 0   Comments: 1

∫_(1/3) ^3 ((x+sin (x^2 −(1/x^2 )))/(x(2+cos (x+(1/x))))) dx ?

313x+sin(x21x2)x(2+cos(x+1x))dx?

Question Number 142149    Answers: 5   Comments: 0

6. ∫(dx/(x^2 −3x+2)) 7. ∫((4dx)/(x^2 +2x+4)) 8. ∫((3−2xdx)/(x^2 −64)) 9. ∫((3x−1)/(x^3 +5x^2 +6x))dx 10. ∫((4−3x)/(x^3 −2x))dx 11. ∫(dx/(x^3 −2x+x))

6.dxx23x+27.4dxx2+2x+48.32xdxx2649.3x1x3+5x2+6xdx10.43xx32xdx11.dxx32x+x

Question Number 142131    Answers: 1   Comments: 1

∫(dx/(3+2sinx+cosx))dx

dx3+2sinx+cosxdx

  Pg 71      Pg 72      Pg 73      Pg 74      Pg 75      Pg 76      Pg 77      Pg 78      Pg 79      Pg 80   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com