Question and Answers Forum |
IntegrationQuestion and Answers: Page 76 |
∫_(−π) ^π ((xsin x)/(1+x^2 ))dx=? |
∫_0 ^(π/2) ((cos^2 t)/(sint))dt |
Σ_(n=1) ^∞ (−1)^n ∙((2n−1)/((2n)!))∙((π/2))^(2n) =Σ_(n=1) ^∞ ((2n−1)/((2n)!))∙(−((π/2))^2 )^n =(2xD−1)∣_(x=π/2) Σ_(n=1) ^∞ (((−x^2 )^n )/((2n)!)) =(2xD−1)∣_(x=π/2) [Σ_(n=0) ^∞ (((−x^2 )^n )/((2n)!))−1] =(2xD−1)∣_(x=π/2) (cos x−1) =(−2xsin x−cos x+1)∣_(x=π/2) =1−π where is wrong? |
Prove :: sec^2 x=4Σ_(n=0) ^∞ {(1/([(2n+1)π−2x]^2 ))+(1/([(2n+1)π+2x]^2 ))} |
![]() |
nice .....integral Ω:=∫_(−∞) ^( +∞) (dx/((x^2 +π^2 )cosh(x))) =? ..... |
∫(dx/((−lnx)^(1/x) )) |
![]() |
![]() |
∫_0 ^1 (t^(k−1) /(1+t^2 ))dt |
![]() |
...... Calculus ..... Evaluate: ∫_0 ^( 1) (((log((1/x)))/(1−x)))^3 dx=?? |
I=∫(dx/( (√(a^2 −(x+(1/x)))))) |
![]() |
∫_0 ^1 ((1−x)/(lnx))dx how many tricks solve this |
prove that: ∫_0 ^( ∞) ln((1/x)).j_0 (x)dx:= γ+ln(2) Hint:(1) j_0 (x)=Σ_(n=0) ^∞ (((−1)^n x^(2n) )/(2^(2n) .Γ^2 (n+1))) (Bessel function) Hint:2 L [ j_0 (x)]=(1/( (√(1+s^2 )))) |
∫_0 ^∞ x^(n−1) log_e (1−x)dx |
calculate ∫_0 ^∞ ((x^2 logx)/(x^6 +1))dx |
calculate ∫_0 ^∞ ((log(1+x^3 ))/(1+x^4 ))dx |
𝛗:=∫^( e) _(1/e) {(1/(ln(x)))+ln(ln(x))}dx |
∫_0 ^∞ ((sinx)/x^μ )dx =? |
evaluate: Θ:=Σ_(n=1) ^∞ ((ζ(n+1)−1)/(n+1)) =? |
L(((1+2bt)/( (√t)))e^(bt) )(s)=? |
∫_(1/3) ^3 ((x+sin (x^2 −(1/x^2 )))/(x(2+cos (x+(1/x))))) dx ? |
6. ∫(dx/(x^2 −3x+2)) 7. ∫((4dx)/(x^2 +2x+4)) 8. ∫((3−2xdx)/(x^2 −64)) 9. ∫((3x−1)/(x^3 +5x^2 +6x))dx 10. ∫((4−3x)/(x^3 −2x))dx 11. ∫(dx/(x^3 −2x+x)) |
∫(dx/(3+2sinx+cosx))dx |