Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 80

Question Number 140977    Answers: 2   Comments: 0

find ∫_0 ^∞ (e^(−t(1+x^2 )) /(1+x^2 ))dx with t≥0

find0et(1+x2)1+x2dxwitht0

Question Number 140976    Answers: 1   Comments: 0

find ∫_0 ^π (dx/((2−cosx−sinx)^2 ))

find0πdx(2cosxsinx)2

Question Number 140971    Answers: 0   Comments: 1

Question Number 140961    Answers: 2   Comments: 0

∫_0 ^( 1) ((ln (x+(√(1−x^2 ))))/x) dx =?

10ln(x+1x2)xdx=?

Question Number 140956    Answers: 1   Comments: 0

.....advanced......calculus..... prove that: 𝛗:= ∫_(−∞) ^( ∞) ((sin^4 (x).cos^4 (x))/x^2 )dx=(π/(16)) m.n

.....advanced......calculus.....provethat:ϕ:=sin4(x).cos4(x)x2dx=π16m.n

Question Number 140966    Answers: 1   Comments: 0

.......nice......calculus..... if Σ_(n=0) ^∞ (((√(cos (nπ))) )/((2n)!!)) = ω then Re(ω):=??

.......nice......calculus.....ifn=0cos(nπ)(2n)!!=ωthenRe(ω):=??

Question Number 140930    Answers: 3   Comments: 0

∫_0 ^π (dx/( (√2) −cos x))

π0dx2cosx

Question Number 140896    Answers: 2   Comments: 0

the function f with variable x satisfies the equation x^2 f ′(x) +2x f(x) = arctan x for 0 < arctan x <(π/2) and f(1)=(π/4). find f(x).

thefunctionfwithvariablexsatisfiestheequationx2f(x)+2xf(x)=arctanxfor0<arctanx<π2andf(1)=π4.findf(x).

Question Number 140866    Answers: 1   Comments: 0

∫_0 ^1 ((ln 2−ln (1+x^2 ))/(1−x)) dx =?

10ln2ln(1+x2)1xdx=?

Question Number 140885    Answers: 1   Comments: 0

....... Advanced ::::::::::★★★:::::::::: Calculus....... find the value of the infinite series:: Θ := Σ_(n=1) ^∞ (((−1)^(n−1) H_( 2n) )/(2n−1)) = ??? .......M.N.july.1970........

.......Advanced::::::::::::::::::::Calculus.......findthevalueoftheinfiniteseries::Θ:=n=1(1)n1H2n2n1=???.......M.N.july.1970........

Question Number 140823    Answers: 1   Comments: 1

Determine whether the improper integral converges or diverges ∫_1 ^( ∞) ((2x+7)/(7x^3 +5x^2 +1)) dx

Determinewhethertheimproperintegralconvergesordiverges12x+77x3+5x2+1dx

Question Number 140793    Answers: 0   Comments: 0

∫(√((x+2)/e^x ))dx=...?

x+2exdx=...?

Question Number 140789    Answers: 2   Comments: 0

.......nice.....math.... calculate:: Θ:= Σ_(n=1) ^∞ (1/) =??

.......nice.....math....calculate::Θ:=n=11=??

Question Number 140768    Answers: 3   Comments: 0

∫_(−∞) ^∞ ((x^2 +4)/(x^4 +16)) dx =?

x2+4x4+16dx=?

Question Number 140715    Answers: 1   Comments: 0

......advanced calculus...... prove that: 𝛗:=∫_0 ^( ∞) (x^2 /(cosh^2 (x^2 )))dx=^? (((√2) −2)/4) (√π) ζ ( (1/2) ) ..............

......advancedcalculus......provethat:ϕ:=0x2cosh2(x2)dx=?224πζ(12)..............

Question Number 140703    Answers: 2   Comments: 0

Question Number 140684    Answers: 2   Comments: 0

∫_0 ^π cos^n (x)∙cos (nx)dx=(π/2^n )

0πcosn(x)cos(nx)dx=π2n

Question Number 140685    Answers: 0   Comments: 0

Question Number 140687    Answers: 0   Comments: 2

Question Number 140645    Answers: 0   Comments: 0

Question Number 140639    Answers: 1   Comments: 0

let U_n =∫_0 ^∞ ((x^n logx)/((x^2 +1)^2 ))dx 1) explicite U_n 2) fond nature of Σ U_n (n integr natural)

letUn=0xnlogx(x2+1)2dx1)expliciteUn2)fondnatureofΣUn(nintegrnatural)

Question Number 140634    Answers: 0   Comments: 0

find ∫_(−∞) ^(+∞) ((cos(2sinx))/((x^2 −x+1)^2 ))dx

find+cos(2sinx)(x2x+1)2dx

Question Number 140635    Answers: 1   Comments: 0

find ∫_(−∞) ^(+∞) ((sin(2cosx))/((x^2 −x+1)^2 ))dx

find+sin(2cosx)(x2x+1)2dx

Question Number 140615    Answers: 1   Comments: 0

Find the area common to the curve y^2 = 12x and x^2 +y^2 = 24x .

Findtheareacommontothecurvey2=12xandx2+y2=24x.

Question Number 140614    Answers: 2   Comments: 0

∫ _0^(π/2) ln (sin x) sec^2 x dx =?

0π2ln(sinx)sec2xdx=?

Question Number 140588    Answers: 1   Comments: 0

.......Advanced ....★★★....Calculus....... evaluation the value of : 𝛗 :=∫_0 ^( (π/2)) sin^2 (x).ln(sin(x))dx solution:: ξ (a):=∫_0 ^( (π/2)) sin^(2+a) (x)dx =(1/2)β (((3+a)/2) ,(1/2)) :=(1/2)(((Γ(((3+a)/2))Γ((1/2)))/(Γ(2+(a/2))))).......✓ 𝛗:= ξ ′ (0) ..............✓ :=(1/2) (√π) (( Γ′(((3+a)/2)).Γ(2+(a/2))−Γ(((3+a)/2)).Γ′(2+(a/2)))/(Γ^2 (2+(a/2)))) ∣_(a=0) :=(1/2)(√π) ((Γ′((3/2))−Γ((3/2)).Γ′(2))/(( Γ^2 (2):=1 ))) :=(1/2)(√π) ((ψ((3/2))Γ((3/2))−Γ((3/2)).ψ(2))/1) := ((√π)/4){ (2−γ−2ln(2)−(1−γ)} :=((√π)/4)(1−ln(4))=(√π) ln(((e/4))^(1/4) )

.......Advanced........Calculus.......evaluationthevalueof:ϕ:=0π2sin2(x).ln(sin(x))dxsolution::ξ(a):=0π2sin2+a(x)dx=12β(3+a2,12):=12(Γ(3+a2)Γ(12)Γ(2+a2)).......ϕ:=ξ(0)..............:=12πΓ(3+a2).Γ(2+a2)Γ(3+a2).Γ(2+a2)Γ2(2+a2)a=0:=12πΓ(32)Γ(32).Γ(2)(Γ2(2):=1):=12πψ(32)Γ(32)Γ(32).ψ(2)1:=π4{(2γ2ln(2)(1γ)}:=π4(1ln(4))=πln(e44)

  Pg 75      Pg 76      Pg 77      Pg 78      Pg 79      Pg 80      Pg 81      Pg 82      Pg 83      Pg 84   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com