Question and Answers Forum |
IntegrationQuestion and Answers: Page 80 |
find ∫_0 ^∞ (e^(−t(1+x^2 )) /(1+x^2 ))dx with t≥0 |
find ∫_0 ^π (dx/((2−cosx−sinx)^2 )) |
![]() |
∫_0 ^( 1) ((ln (x+(√(1−x^2 ))))/x) dx =? |
.....advanced......calculus..... prove that: 𝛗:= ∫_(−∞) ^( ∞) ((sin^4 (x).cos^4 (x))/x^2 )dx=(π/(16)) m.n |
.......nice......calculus..... if Σ_(n=0) ^∞ (((√(cos (nπ))) )/((2n)!!)) = ω then Re(ω):=?? |
∫_0 ^π (dx/( (√2) −cos x)) |
the function f with variable x satisfies the equation x^2 f ′(x) +2x f(x) = arctan x for 0 < arctan x <(π/2) and f(1)=(π/4). find f(x). |
∫_0 ^1 ((ln 2−ln (1+x^2 ))/(1−x)) dx =? |
....... Advanced ::::::::::★★★:::::::::: Calculus....... find the value of the infinite series:: Θ := Σ_(n=1) ^∞ (((−1)^(n−1) H_( 2n) )/(2n−1)) = ??? .......M.N.july.1970........ |
Determine whether the improper integral converges or diverges ∫_1 ^( ∞) ((2x+7)/(7x^3 +5x^2 +1)) dx |
∫(√((x+2)/e^x ))dx=...? |
.......nice.....math.... calculate:: Θ:= Σ_(n=1) ^∞ (1/) =?? |
∫_(−∞) ^∞ ((x^2 +4)/(x^4 +16)) dx =? |
......advanced calculus...... prove that: 𝛗:=∫_0 ^( ∞) (x^2 /(cosh^2 (x^2 )))dx=^? (((√2) −2)/4) (√π) ζ ( (1/2) ) .............. |
![]() |
∫_0 ^π cos^n (x)∙cos (nx)dx=(π/2^n ) |
![]() |
![]() |
let U_n =∫_0 ^∞ ((x^n logx)/((x^2 +1)^2 ))dx 1) explicite U_n 2) fond nature of Σ U_n (n integr natural) |
find ∫_(−∞) ^(+∞) ((cos(2sinx))/((x^2 −x+1)^2 ))dx |
find ∫_(−∞) ^(+∞) ((sin(2cosx))/((x^2 −x+1)^2 ))dx |
Find the area common to the curve y^2 = 12x and x^2 +y^2 = 24x . |
∫ _0^(π/2) ln (sin x) sec^2 x dx =? |
.......Advanced ....★★★....Calculus....... evaluation the value of : 𝛗 :=∫_0 ^( (π/2)) sin^2 (x).ln(sin(x))dx solution:: ξ (a):=∫_0 ^( (π/2)) sin^(2+a) (x)dx =(1/2)β (((3+a)/2) ,(1/2)) :=(1/2)(((Γ(((3+a)/2))Γ((1/2)))/(Γ(2+(a/2))))).......✓ 𝛗:= ξ ′ (0) ..............✓ :=(1/2) (√π) (( Γ′(((3+a)/2)).Γ(2+(a/2))−Γ(((3+a)/2)).Γ′(2+(a/2)))/(Γ^2 (2+(a/2)))) ∣_(a=0) :=(1/2)(√π) ((Γ′((3/2))−Γ((3/2)).Γ′(2))/(( Γ^2 (2):=1 ))) :=(1/2)(√π) ((ψ((3/2))Γ((3/2))−Γ((3/2)).ψ(2))/1) := ((√π)/4){ (2−γ−2ln(2)−(1−γ)} :=((√π)/4)(1−ln(4))=(√π) ln(((e/4))^(1/4) ) |