Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 83

Question Number 140956    Answers: 1   Comments: 0

.....advanced......calculus..... prove that: 𝛗:= ∫_(βˆ’βˆž) ^( ∞) ((sin^4 (x).cos^4 (x))/x^2 )dx=(Ο€/(16)) m.n

.....advanced......calculus.....provethat:Ο•:=βˆ«βˆ’βˆžβˆžsin4(x).cos4(x)x2dx=Ο€16m.n

Question Number 140966    Answers: 1   Comments: 0

.......nice......calculus..... if Ξ£_(n=0) ^∞ (((√(cos (nΟ€))) )/((2n)!!)) = Ο‰ then Re(Ο‰):=??

.......nice......calculus.....ifβˆ‘βˆžn=0cos(nΟ€)(2n)!!=Ο‰thenRe(Ο‰):=??

Question Number 140930    Answers: 3   Comments: 0

∫_0 ^Ο€ (dx/( (√2) βˆ’cos x))

βˆ«Ο€0dx2βˆ’cosx

Question Number 140896    Answers: 2   Comments: 0

the function f with variable x satisfies the equation x^2 f β€²(x) +2x f(x) = arctan x for 0 < arctan x <(Ο€/2) and f(1)=(Ο€/4). find f(x).

thefunctionfwithvariablexsatisfiestheequationx2fβ€²(x)+2xf(x)=arctanxfor0<arctanx<Ο€2andf(1)=Ο€4.findf(x).

Question Number 140866    Answers: 1   Comments: 0

∫_0 ^1 ((ln 2βˆ’ln (1+x^2 ))/(1βˆ’x)) dx =?

∫10ln2βˆ’ln(1+x2)1βˆ’xdx=?

Question Number 140885    Answers: 1   Comments: 0

....... Advanced ::::::::::β˜…β˜…β˜…:::::::::: Calculus....... find the value of the infinite series:: Θ := Ξ£_(n=1) ^∞ (((βˆ’1)^(nβˆ’1) H_( 2n) )/(2nβˆ’1)) = ??? .......M.N.july.1970........

.......Advanced::::::::::β˜…β˜…β˜…::::::::::Calculus.......findthevalueoftheinfiniteseries::Θ:=βˆ‘βˆžn=1(βˆ’1)nβˆ’1H2n2nβˆ’1=???.......M.N.july.1970........

Question Number 140823    Answers: 1   Comments: 1

Determine whether the improper integral converges or diverges ∫_1 ^( ∞) ((2x+7)/(7x^3 +5x^2 +1)) dx

Determinewhethertheimproperintegralconvergesordiverges∫1∞2x+77x3+5x2+1dx

Question Number 140793    Answers: 0   Comments: 0

∫(√((x+2)/e^x ))dx=...?

∫x+2exdx=...?

Question Number 140789    Answers: 2   Comments: 0

.......nice.....math.... calculate:: Θ:= Σ_(n=1) ^∞ (1/) =??

.......nice.....math....calculate::Θ:=βˆ‘βˆžn=11=??

Question Number 140768    Answers: 3   Comments: 0

∫_(βˆ’βˆž) ^∞ ((x^2 +4)/(x^4 +16)) dx =?

βˆ«βˆ’βˆžβˆžx2+4x4+16dx=?

Question Number 140715    Answers: 1   Comments: 0

......advanced calculus...... prove that: 𝛗:=∫_0 ^( ∞) (x^2 /(cosh^2 (x^2 )))dx=^? (((√2) βˆ’2)/4) (βˆšΟ€) ΞΆ ( (1/2) ) ..............

......advancedcalculus......provethat:Ο•:=∫0∞x2cosh2(x2)dx=?2βˆ’24π΢(12)..............

Question Number 140703    Answers: 2   Comments: 0

Question Number 140684    Answers: 2   Comments: 0

∫_0 ^Ο€ cos^n (x)βˆ™cos (nx)dx=(Ο€/2^n )

∫0Ο€cosn(x)β‹…cos(nx)dx=Ο€2n

Question Number 140685    Answers: 0   Comments: 0

Question Number 140687    Answers: 0   Comments: 2

Question Number 140645    Answers: 0   Comments: 0

Question Number 140639    Answers: 1   Comments: 0

let U_n =∫_0 ^∞ ((x^n logx)/((x^2 +1)^2 ))dx 1) explicite U_n 2) fond nature of Σ U_n (n integr natural)

letUn=∫0∞xnlogx(x2+1)2dx1)expliciteUn2)fondnatureofΣUn(nintegrnatural)

Question Number 140634    Answers: 0   Comments: 0

find ∫_(βˆ’βˆž) ^(+∞) ((cos(2sinx))/((x^2 βˆ’x+1)^2 ))dx

findβˆ«βˆ’βˆž+∞cos(2sinx)(x2βˆ’x+1)2dx

Question Number 140635    Answers: 1   Comments: 0

find ∫_(βˆ’βˆž) ^(+∞) ((sin(2cosx))/((x^2 βˆ’x+1)^2 ))dx

findβˆ«βˆ’βˆž+∞sin(2cosx)(x2βˆ’x+1)2dx

Question Number 140615    Answers: 1   Comments: 0

Find the area common to the curve y^2 = 12x and x^2 +y^2 = 24x .

Findtheareacommontothecurvey2=12xandx2+y2=24x.

Question Number 140614    Answers: 2   Comments: 0

∫ _0^(Ο€/2) ln (sin x) sec^2 x dx =?

∫0Ο€2ln(sinx)sec2xdx=?

Question Number 140588    Answers: 1   Comments: 0

.......Advanced ....β˜…β˜…β˜…....Calculus....... evaluation the value of : 𝛗 :=∫_0 ^( (Ο€/2)) sin^2 (x).ln(sin(x))dx solution:: ΞΎ (a):=∫_0 ^( (Ο€/2)) sin^(2+a) (x)dx =(1/2)Ξ² (((3+a)/2) ,(1/2)) :=(1/2)(((Ξ“(((3+a)/2))Ξ“((1/2)))/(Ξ“(2+(a/2))))).......βœ“ 𝛗:= ΞΎ β€² (0) ..............βœ“ :=(1/2) (βˆšΟ€) (( Ξ“β€²(((3+a)/2)).Ξ“(2+(a/2))βˆ’Ξ“(((3+a)/2)).Ξ“β€²(2+(a/2)))/(Ξ“^2 (2+(a/2)))) ∣_(a=0) :=(1/2)(βˆšΟ€) ((Ξ“β€²((3/2))βˆ’Ξ“((3/2)).Ξ“β€²(2))/(( Ξ“^2 (2):=1 ))) :=(1/2)(βˆšΟ€) ((ψ((3/2))Ξ“((3/2))βˆ’Ξ“((3/2)).ψ(2))/1) := ((βˆšΟ€)/4){ (2βˆ’Ξ³βˆ’2ln(2)βˆ’(1βˆ’Ξ³)} :=((βˆšΟ€)/4)(1βˆ’ln(4))=(βˆšΟ€) ln(((e/4))^(1/4) )

.......Advanced....β˜…β˜…β˜…....Calculus.......evaluationthevalueof:Ο•:=∫0Ο€2sin2(x).ln(sin(x))dxsolution::ΞΎ(a):=∫0Ο€2sin2+a(x)dx=12Ξ²(3+a2,12):=12(Ξ“(3+a2)Ξ“(12)Ξ“(2+a2)).......βœ“Ο•:=ΞΎβ€²(0)..............βœ“:=12πΓ′(3+a2).Ξ“(2+a2)βˆ’Ξ“(3+a2).Ξ“β€²(2+a2)Ξ“2(2+a2)∣a=0:=12πΓ′(32)βˆ’Ξ“(32).Ξ“β€²(2)(Ξ“2(2):=1):=12Ο€Οˆ(32)Ξ“(32)βˆ’Ξ“(32).ψ(2)1:=Ο€4{(2βˆ’Ξ³βˆ’2ln(2)βˆ’(1βˆ’Ξ³)}:=Ο€4(1βˆ’ln(4))=Ο€ln(e44)

Question Number 140554    Answers: 0   Comments: 5

Whatβ€²s the relationship between Dirichlet Ξ²(s) function with ΞΆ(s) function ? That is Ξ£_(n=0) ^∞ (((βˆ’1)^n )/((2n+1)^s )) with Ξ£_(n=1) ^∞ (1/n^s ).

Whatβ€²stherelationshipbetweenDirichletΞ²(s)functionwithΞΆ(s)function?Thatisβˆ‘βˆžn=0(βˆ’1)n(2n+1)swithβˆ‘βˆžn=11ns.

Question Number 140500    Answers: 0   Comments: 0

tan^2 1Β°+tan^2 2Β°+tan^2 3Β°+...+tan^2 89Β°=((15931)/3) ???

tan21Β°+tan22Β°+tan23Β°+...+tan289Β°=159313???

Question Number 140490    Answers: 1   Comments: 1

Question Number 140447    Answers: 1   Comments: 0

  Pg 78      Pg 79      Pg 80      Pg 81      Pg 82      Pg 83      Pg 84      Pg 85      Pg 86      Pg 87   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com