Question and Answers Forum |
IntegrationQuestion and Answers: Page 84 |
find ∫_(−∞) ^(+∞) ((cos(2sinx))/((x^2 −x+1)^2 ))dx |
find ∫_(−∞) ^(+∞) ((sin(2cosx))/((x^2 −x+1)^2 ))dx |
Find the area common to the curve y^2 = 12x and x^2 +y^2 = 24x . |
∫ _0^(π/2) ln (sin x) sec^2 x dx =? |
.......Advanced ....★★★....Calculus....... evaluation the value of : 𝛗 :=∫_0 ^( (π/2)) sin^2 (x).ln(sin(x))dx solution:: ξ (a):=∫_0 ^( (π/2)) sin^(2+a) (x)dx =(1/2)β (((3+a)/2) ,(1/2)) :=(1/2)(((Γ(((3+a)/2))Γ((1/2)))/(Γ(2+(a/2))))).......✓ 𝛗:= ξ ′ (0) ..............✓ :=(1/2) (√π) (( Γ′(((3+a)/2)).Γ(2+(a/2))−Γ(((3+a)/2)).Γ′(2+(a/2)))/(Γ^2 (2+(a/2)))) ∣_(a=0) :=(1/2)(√π) ((Γ′((3/2))−Γ((3/2)).Γ′(2))/(( Γ^2 (2):=1 ))) :=(1/2)(√π) ((ψ((3/2))Γ((3/2))−Γ((3/2)).ψ(2))/1) := ((√π)/4){ (2−γ−2ln(2)−(1−γ)} :=((√π)/4)(1−ln(4))=(√π) ln(((e/4))^(1/4) ) |
What′s the relationship between Dirichlet β(s) function with ζ(s) function ? That is Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^s )) with Σ_(n=1) ^∞ (1/n^s ). |
tan^2 1°+tan^2 2°+tan^2 3°+...+tan^2 89°=((15931)/3) ??? |
![]() |
![]() |
find the value of :: Θ :=Σ_(n=1 ) ^∞ (1/(4n.(4n+1).(4n+2).(4n+3)))=? |
evaluate :: Φ:=∫_0 ^( ∞) xe^(−(x^2 /4)) ln(x)dx = m.( π γ) find ” m ” ...... |
𝛏 :=∫_0 ^( ∞) ((e^(−x^2 ) −e^(−x) )/x) dx = k.γ find ” k ” ... γ := Euler constant.... |
∫_0 ^∞ ((ln x)/((x^2 +a^2 )^5 )) dx |
![]() |
![]() |
calculate :: 𝛏 := ∫_(−∞) ^( ∞) ln(2−2cos(x^2 ))dx=? |
Find the Integration Value: 1 ∫(((√x)d(x))/(1+^3 (√x)))=? 2 ∫(dx/(x^(1/2) −x^(1/4) ))=? |
prove that ∫_0 ^∞ ((ln x)/(x^2 +1)) dx = 0 |
Σ_(k=0) ^(p−1) ((p),(k) )sin [2(p−k)x]=? ((p),(0) )sin (2px)+ ((p),(1) )sin [(2p−2)x]+ ((p),(2) )sin [(2p−4)x]+...+ ((( p)),((p−1)) )sin (2x)=2^p ∙cos^p (x)∙sin (px) ??? or ∫_0 ^∞ ((cos^p (x)∙sin (px))/x)dx=(π/2)(1−2^(−p) ) why ??? |
∫(√(x (/))) |
∫_0 ^∞ x^2 [ln(1+e^x )−x]dx=((7π^4 )/(360)) |
∫_0 ^∞ (((lnx)/(x−1)))^2 dx=(2/3)π^2 |
∫_0 ^∞ (((lnx)/(x−1)))^3 dx=π^2 |
please integrate:: f(x)=∫_0 ^( 1) {(1/z)log(((z^2 +2zcos(x)+1)/((z+1)^2 )))}dz |
∫3x |
![]() |