Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 84

Question Number 140634    Answers: 0   Comments: 0

find ∫_(−∞) ^(+∞) ((cos(2sinx))/((x^2 −x+1)^2 ))dx

find+cos(2sinx)(x2x+1)2dx

Question Number 140635    Answers: 1   Comments: 0

find ∫_(−∞) ^(+∞) ((sin(2cosx))/((x^2 −x+1)^2 ))dx

find+sin(2cosx)(x2x+1)2dx

Question Number 140615    Answers: 1   Comments: 0

Find the area common to the curve y^2 = 12x and x^2 +y^2 = 24x .

Findtheareacommontothecurvey2=12xandx2+y2=24x.

Question Number 140614    Answers: 2   Comments: 0

∫ _0^(π/2) ln (sin x) sec^2 x dx =?

0π2ln(sinx)sec2xdx=?

Question Number 140588    Answers: 1   Comments: 0

.......Advanced ....★★★....Calculus....... evaluation the value of : 𝛗 :=∫_0 ^( (π/2)) sin^2 (x).ln(sin(x))dx solution:: ξ (a):=∫_0 ^( (π/2)) sin^(2+a) (x)dx =(1/2)β (((3+a)/2) ,(1/2)) :=(1/2)(((Γ(((3+a)/2))Γ((1/2)))/(Γ(2+(a/2))))).......✓ 𝛗:= ξ ′ (0) ..............✓ :=(1/2) (√π) (( Γ′(((3+a)/2)).Γ(2+(a/2))−Γ(((3+a)/2)).Γ′(2+(a/2)))/(Γ^2 (2+(a/2)))) ∣_(a=0) :=(1/2)(√π) ((Γ′((3/2))−Γ((3/2)).Γ′(2))/(( Γ^2 (2):=1 ))) :=(1/2)(√π) ((ψ((3/2))Γ((3/2))−Γ((3/2)).ψ(2))/1) := ((√π)/4){ (2−γ−2ln(2)−(1−γ)} :=((√π)/4)(1−ln(4))=(√π) ln(((e/4))^(1/4) )

.......Advanced........Calculus.......evaluationthevalueof:ϕ:=0π2sin2(x).ln(sin(x))dxsolution::ξ(a):=0π2sin2+a(x)dx=12β(3+a2,12):=12(Γ(3+a2)Γ(12)Γ(2+a2)).......ϕ:=ξ(0)..............:=12πΓ(3+a2).Γ(2+a2)Γ(3+a2).Γ(2+a2)Γ2(2+a2)a=0:=12πΓ(32)Γ(32).Γ(2)(Γ2(2):=1):=12πψ(32)Γ(32)Γ(32).ψ(2)1:=π4{(2γ2ln(2)(1γ)}:=π4(1ln(4))=πln(e44)

Question Number 140554    Answers: 0   Comments: 5

What′s the relationship between Dirichlet β(s) function with ζ(s) function ? That is Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^s )) with Σ_(n=1) ^∞ (1/n^s ).

WhatstherelationshipbetweenDirichletβ(s)functionwithζ(s)function?Thatisn=0(1)n(2n+1)swithn=11ns.

Question Number 140500    Answers: 0   Comments: 0

tan^2 1°+tan^2 2°+tan^2 3°+...+tan^2 89°=((15931)/3) ???

tan21°+tan22°+tan23°+...+tan289°=159313???

Question Number 140490    Answers: 1   Comments: 1

Question Number 140447    Answers: 1   Comments: 0

Question Number 140405    Answers: 1   Comments: 0

find the value of :: Θ :=Σ_(n=1 ) ^∞ (1/(4n.(4n+1).(4n+2).(4n+3)))=?

findthevalueof::Θ:=n=114n.(4n+1).(4n+2).(4n+3)=?

Question Number 140401    Answers: 2   Comments: 0

evaluate :: Φ:=∫_0 ^( ∞) xe^(−(x^2 /4)) ln(x)dx = m.( π γ) find ” m ” ......

evaluate::Φ:=0xex24ln(x)dx=m.(πγ)findm......

Question Number 140399    Answers: 1   Comments: 0

𝛏 :=∫_0 ^( ∞) ((e^(−x^2 ) −e^(−x) )/x) dx = k.γ find ” k ” ... γ := Euler constant....

ξ:=0ex2exxdx=k.γfindk...γ:=Eulerconstant....

Question Number 140388    Answers: 3   Comments: 0

∫_0 ^∞ ((ln x)/((x^2 +a^2 )^5 )) dx

0lnx(x2+a2)5dx

Question Number 140353    Answers: 0   Comments: 1

Question Number 140350    Answers: 0   Comments: 0

Question Number 140334    Answers: 1   Comments: 0

calculate :: 𝛏 := ∫_(−∞) ^( ∞) ln(2−2cos(x^2 ))dx=?

calculate::ξ:=ln(22cos(x2))dx=?

Question Number 140330    Answers: 2   Comments: 0

Find the Integration Value: 1 ∫(((√x)d(x))/(1+^3 (√x)))=? 2 ∫(dx/(x^(1/2) −x^(1/4) ))=?

FindtheIntegrationValue:1xd(x)1+3x=?2dxx12x14=?

Question Number 140310    Answers: 2   Comments: 0

prove that ∫_0 ^∞ ((ln x)/(x^2 +1)) dx = 0

provethat0lnxx2+1dx=0

Question Number 140282    Answers: 0   Comments: 0

Σ_(k=0) ^(p−1) ((p),(k) )sin [2(p−k)x]=? ((p),(0) )sin (2px)+ ((p),(1) )sin [(2p−2)x]+ ((p),(2) )sin [(2p−4)x]+...+ ((( p)),((p−1)) )sin (2x)=2^p ∙cos^p (x)∙sin (px) ??? or ∫_0 ^∞ ((cos^p (x)∙sin (px))/x)dx=(π/2)(1−2^(−p) ) why ???

p1k=0(pk)sin[2(pk)x]=?(p0)sin(2px)+(p1)sin[(2p2)x]+(p2)sin[(2p4)x]+...+(pp1)sin(2x)=2pcosp(x)sin(px)???or0cosp(x)sin(px)xdx=π2(12p)why???

Question Number 140278    Answers: 0   Comments: 0

∫(√(x (/)))

x

Question Number 140221    Answers: 1   Comments: 0

∫_0 ^∞ x^2 [ln(1+e^x )−x]dx=((7π^4 )/(360))

0x2[ln(1+ex)x]dx=7π4360

Question Number 140202    Answers: 2   Comments: 0

∫_0 ^∞ (((lnx)/(x−1)))^2 dx=(2/3)π^2

0(lnxx1)2dx=23π2

Question Number 140200    Answers: 1   Comments: 1

∫_0 ^∞ (((lnx)/(x−1)))^3 dx=π^2

0(lnxx1)3dx=π2

Question Number 140194    Answers: 1   Comments: 0

please integrate:: f(x)=∫_0 ^( 1) {(1/z)log(((z^2 +2zcos(x)+1)/((z+1)^2 )))}dz

pleaseintegrate::f(x)=01{1zlog(z2+2zcos(x)+1(z+1)2)}dz

Question Number 140191    Answers: 0   Comments: 0

∫3x

3x

Question Number 140148    Answers: 1   Comments: 0

  Pg 79      Pg 80      Pg 81      Pg 82      Pg 83      Pg 84      Pg 85      Pg 86      Pg 87      Pg 88   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com