Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 92

Question Number 136840    Answers: 3   Comments: 0

∫(√(x/(x−1))) dx

xx1dx

Question Number 136841    Answers: 3   Comments: 0

∫(√(x^2 +1 )) dx = ?

x2+1dx=?

Question Number 136835    Answers: 0   Comments: 0

.....nice calculus... for f(x)=f(x+π) : ∫_(−∞) ^( ∞) f(x).((sin^2 (x))/x^2 )dx=^(why???) ∫_0 ^( π) f(x)dx

.....nicecalculus...forf(x)=f(x+π):f(x).sin2(x)x2dx=why???0πf(x)dx

Question Number 136813    Answers: 1   Comments: 0

......advanced calculus(I).... if : Ω=∫_(π/4) ^( (π/2)) ((x.cos(2x).cos(x))/(sin^7 (x))) dx=((aπ)/(90)) then :: a=???

......advancedcalculus(I)....if:Ω=π4π2x.cos(2x).cos(x)sin7(x)dx=aπ90then::a=???

Question Number 136806    Answers: 2   Comments: 0

Question Number 136803    Answers: 1   Comments: 0

.....Advanced ◂.............▶ Calculus..... 𝛗=∫_(−∞) ^( ∞) ((sin((1/x^3 )))/x)dx=......??? solution:: 𝛗=^((1/x) =t) 2∫_0 ^( ∞) ((sin(t^3 ))/(1/t)).(dt/t^2 ) ............. =2∫_0 ^( ∞) ((sin(t^3 ))/t)dt ......... =^(t^3 =y) (2/3)∫_0 ^( ∞) ((sin(y))/y^(1/3) ).(dy/y^(2/3) )=(2/3)∫_0 ^( ∞) ((sin(y))/y) =^(⟨∫_0 ^( ∞) ((sin(r))/r)dr =(π/2)⟩) (π/3) ........... ........𝛗=∫_(−∞) ^( ∞) ((sin((1/x))^3 )/x)dx=(π/3) ........✓✓✓

.....Advanced.............Calculus.....ϕ=sin(1x3)xdx=......???solution::ϕ=1x=t20sin(t3)1t.dtt2.............=20sin(t3)tdt.........=t3=y230sin(y)y13.dyy23=230sin(y)y=0sin(r)rdr=π2π3...................ϕ=sin(1x)3xdx=π3........

Question Number 136762    Answers: 0   Comments: 0

let C(a,r)={z∈C, ∣z−a∣=r } Let u,v,w ∈C(a,r) such as u+v=2w Prove that ((u−a)/(v−a)) =1 , u=v=w It shows that the middle of a segment joining two points in a circle is not in that circle

letC(a,r)={zC,za∣=r}Letu,v,wC(a,r)suchasu+v=2wProvethatuava=1,u=v=wItshowsthatthemiddleofasegmentjoiningtwopointsinacircleisnotinthatcircle

Question Number 136750    Answers: 3   Comments: 0

.....advanced calculus..... prove that :: ... 𝛗=∫_0 ^( ∞) ((1−e^(−x^2 ) )/x^2 )dx=(√π)

.....advancedcalculus.....provethat::...ϕ=01ex2x2dx=π

Question Number 136723    Answers: 1   Comments: 0

....calculus (I)..... prove that :: f(x)= (1/( (√(1−4x)))) =^(???) Σ_(n=0) ^∞ ((( 2n)),(( n)) ) x^n

....calculus(I).....provethat::f(x)=114x=???n=0(2nn)xn

Question Number 136680    Answers: 2   Comments: 0

Question Number 136651    Answers: 2   Comments: 0

Question Number 136644    Answers: 1   Comments: 0

𝛗=∫_0 ^( 1) ((ln(x^2 +1))/x^2 )dx f(a)=∫_0 ^( 1) ((log(ax^2 +1))/x^2 )dx f ′(a)=∫_0 ^( 1) (x^2 /((ax^2 +1)x^2 ))dx=(1/a)∫_0 ^( 1) (dx/(x^2 +((1/( (√a))))^2 )) =((√a)/a)[tan^(−1) (x(√a) )]_0 ^1 =((√a)/a)tan^(−1) ((√a)) f(a)=^((√a) =u) ∫2tan^(−1) (u)du =2{u.tan^(−1) (u)−∫(u/(1+u^2 ))du}+C =2(√a) tan^(−1) ((√a) )−ln(1+a)+C f(0)=0=0+C⇒C=0 f(1)=𝛗=2((π/4))−ln(2)=(π/2)−ln(2)

ϕ=01ln(x2+1)x2dxf(a)=01log(ax2+1)x2dxf(a)=01x2(ax2+1)x2dx=1a01dxx2+(1a)2=aa[tan1(xa)]01=aatan1(a)f(a)=a=u2tan1(u)du=2{u.tan1(u)u1+u2du}+C=2atan1(a)ln(1+a)+Cf(0)=0=0+CC=0f(1)=ϕ=2(π4)ln(2)=π2ln(2)

Question Number 136626    Answers: 1   Comments: 0

..........nice calculus......... suppose that::: ϕ(p)=∫_0 ^( ∞) ((ln(1+x))/((p+x)^2 )) ...✓ find the value of:: ∫^( 1) _0 ((ϕ(p))/(1+p))dp=?...

..........nicecalculus.........supposethat:::φ(p)=0ln(1+x)(p+x)2...findthevalueof::01φ(p)1+pdp=?...

Question Number 136572    Answers: 3   Comments: 1

....advanced calculus.... 𝛗=∫_0 ^( (π/2)) x.(tan(x))^(1/2) dx=??

....advancedcalculus....ϕ=0π2x.(tan(x))12dx=??

Question Number 136497    Answers: 1   Comments: 2

......nice calculus..... prove:: ∫_0 ^( 1) (1/(1+ln^2 (x)))dx=∫_(0 ) ^( ∞) ((sin(x))/(1+x))dx

......nicecalculus.....prove::0111+ln2(x)dx=0sin(x)1+xdx

Question Number 136482    Answers: 0   Comments: 0

f(x)=∫_(−Π/4) ^(Π∫/4) e^(xtant) dt

f(x)=Π/4Π/4extantdt

Question Number 136481    Answers: 1   Comments: 0

∫_0 ^((50π)/3) ∣sinx∣dx

050π3sinxdx

Question Number 136476    Answers: 1   Comments: 0

(a) Let I(α)=∫_0 ^∞ e^(−(x−(α/x))^2 ) dx Show that it is legitimate to take the derivative of I(α) and also I′(α)= 0. Then show that I(α)=((√π)/2). (b) Use (a) to prove ∫_0 ^∞ e^(−(x^2 +α^2 x^(−2) )) dx=((√π)/2)e^(−2α) .

(a)LetI(α)=0e(xαx)2dxShowthatitislegitimatetotakethederivativeofI(α)andalsoI(α)=0.ThenshowthatI(α)=π2.(b)Use(a)toprove0e(x2+α2x2)dx=π2e2α.

Question Number 136473    Answers: 0   Comments: 0

Question Number 136445    Answers: 2   Comments: 0

Question Number 136440    Answers: 2   Comments: 0

∫ (dx/(sin^6 x)) ?

dxsin6x?

Question Number 136425    Answers: 1   Comments: 3

If α>0 and β>0, prove ∫_0 ^∞ ((ln(αx))/(β^2 +x^2 ))dx=(π/(2β))ln(αβ)

Ifα>0andβ>0,prove0ln(αx)β2+x2dx=π2βln(αβ)

Question Number 136406    Answers: 0   Comments: 1

calculate A_λ =∫_0 ^∞ ((cos^4 x)/((x^2 +λ^2 )^2 ))dx 2) find the value of ∫_0 ^∞ ((cos^4 x)/((x^2 +3)^2 ))dx

calculateAλ=0cos4x(x2+λ2)2dx2)findthevalueof0cos4x(x2+3)2dx

Question Number 136405    Answers: 0   Comments: 0

if f(x)=x^3 −3x+2 determine f^(−1) (x) and ∫ f^(−1) (nf(x))dx with n integr

iff(x)=x33x+2determinef1(x)andf1(nf(x))dxwithnintegr

Question Number 136403    Answers: 0   Comments: 0

find ∫ ((arctan(2x))/(x+3))dx

findarctan(2x)x+3dx

Question Number 136402    Answers: 0   Comments: 0

find U_n =∫_(1/n) ^n (1−(1/x^2 ))arctan(x+(1/x))dx and lim_(n→∞) U_n

findUn=1nn(11x2)arctan(x+1x)dxandlimnUn

  Pg 87      Pg 88      Pg 89      Pg 90      Pg 91      Pg 92      Pg 93      Pg 94      Pg 95      Pg 96   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com