Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 94

Question Number 136076    Answers: 1   Comments: 0

find the area between the curve y = 3 + 2x −x^2 , the x−axis and the line y = 3. find the volume of the solid generated when the curve is rotated completely about the line y = 3

findtheareabetweenthecurvey=3+2xx2,thexaxisandtheliney=3.findthevolumeofthesolidgeneratedwhenthecurveisrotatedcompletelyabouttheliney=3

Question Number 136067    Answers: 2   Comments: 0

Λ = ∫ x^3 (x^3 +1)^(10) dx

Λ=x3(x3+1)10dx

Question Number 136060    Answers: 1   Comments: 0

...advanced calculus.... evaluate:: 𝛗=Im(∫_0 ^( (π/2)) li_2 (sin(x))+li_2 (csc(x))dx)

...advancedcalculus....evaluate::ϕ=Im(0π2li2(sin(x))+li2(csc(x))dx)

Question Number 136036    Answers: 1   Comments: 4

calculate ∫_0 ^∞ ((logx)/(x^4 +x^2 +1))dx

calculate0logxx4+x2+1dx

Question Number 136034    Answers: 1   Comments: 0

calculate ∫_(−∞) ^(+∞) ((cos(2x)dx)/(x^4 +x^2 +1))

calculate+cos(2x)dxx4+x2+1

Question Number 136023    Answers: 0   Comments: 1

calculate ∫_0 ^∞ e^(−z^2 ) dz with z complex

calculate0ez2dzwithzcomplex

Question Number 135996    Answers: 1   Comments: 0

Question Number 135957    Answers: 2   Comments: 0

1) find ∫ (dx/((x+1)^2 (x−3)^4 )) 2) deduce the decomposition of F(x)=(1/((x+1)^2 (x−3)^4 ))

1)finddx(x+1)2(x3)42)deducethedecompositionofF(x)=1(x+1)2(x3)4

Question Number 135932    Answers: 2   Comments: 0

Evaluate (1) ∫_0 ^1 ∫_0 ^x ∫_0 ^y (3x^2 +2y^2 −3z^2 )dxdydz (2) ∫(2x−2)^3 dx (3) ∫(((x−5)/(x^2 −10x+2)))dx

Evaluate(1)010x0y(3x2+2y23z2)dxdydz(2)(2x2)3dx(3)(x5x210x+2)dx

Question Number 135888    Answers: 1   Comments: 0

Question Number 135872    Answers: 1   Comments: 0

Evaluate ∮_c ydy where c is a circle x^2 +y^2 =4

Evaluatecydywherecisacirclex2+y2=4

Question Number 135867    Answers: 3   Comments: 0

sin^2 (4x)+cos^2 (x)=2sin (4x)cos^2 (x)

sin2(4x)+cos2(x)=2sin(4x)cos2(x)

Question Number 135820    Answers: 1   Comments: 0

Let f(x)=∫_0 ^x e^(−t^2 ) dt , Prove ∫_0 ^∞ e^(−x^2 +f(x)) dx=e^((√π)/2) −1.

Letf(x)=0xet2dt,Prove0ex2+f(x)dx=eπ21.

Question Number 135784    Answers: 1   Comments: 0

Given { ((f(3)=4 , f ′(3)=−2)),((f(8)=5 , f ′(8)=3)) :} find ∫_3 ^( 8) x f ′′(x) dx .

Given{f(3)=4,f(3)=2f(8)=5,f(8)=3find38xf(x)dx.

Question Number 135753    Answers: 1   Comments: 1

Question Number 135777    Answers: 1   Comments: 0

let U_n =∫_(−∞) ^(+∞) ((cos(nx))/((x^2 −x+1)^2 ))dx calculate lim_(n→+∞) e^n^2 U_n

letUn=+cos(nx)(x2x+1)2dxcalculatelimn+en2Un

Question Number 135737    Answers: 2   Comments: 0

∫_(−2π) ^(4π) (3/(5−4cosx))dx

2π4π354cosxdx

Question Number 135697    Answers: 0   Comments: 0

Question Number 135693    Answers: 1   Comments: 0

Ω = ∫ ((x−1)/((x−2)(x^2 −2x+2)^2 )) dx

Ω=x1(x2)(x22x+2)2dx

Question Number 135673    Answers: 2   Comments: 0

∫ ((x^2 +1)/(x^4 +x^2 +1)) dx

x2+1x4+x2+1dx

Question Number 135646    Answers: 1   Comments: 0

∫(x+(1/2))ln(1+(1/x))−x dx=...?

(x+12)ln(1+1x)xdx=...?

Question Number 135633    Answers: 1   Comments: 0

∫(1/(x^(1/3) +1))dx=...?

1x13+1dx=...?

Question Number 135662    Answers: 0   Comments: 0

Question Number 135627    Answers: 1   Comments: 0

... nice ................. calculus ... evaluation::::: 𝛗=^(???) ∫_0 ^( (π/2)) sin(x)ln(sin(x))dx solution::::: 𝛗=^(⟨cos(x)=y⟩) (1/2)∫_0 ^( 1) ln(1−y^2 )dy =−(1/2)∫_0 ^( 1) Σ_(n=1 ) ^∞ (y^(2n) /n)=((−1)/2)Σ_(n=1) ^∞ ((1/n)∫_0 ^( 1) y^(2n) dy) =((−1)/2)Σ_(n=1) ^∞ (1/(n(2n+1)))=−Σ_(n=1) ^∞ (1/(2n)) −(1/(2n+1)) =−((1/2)−(1/3)+(1/4)−(1/5)+...) =−1+(1−(1/2)+(1/3)−...) =−1+Σ_(n=1) ^∞ (((−1)^(n−1) )/n)=_(harmonic seties) ^(alternating) −1+ln(2) ∴ 𝛗= −1+ln(2)=ln((2/e))

...nice.................calculus...evaluation:::::ϕ=???0π2sin(x)ln(sin(x))dxsolution:::::ϕ=cos(x)=y1201ln(1y2)dy=1201n=1y2nn=12n=1(1n01y2ndy)=12n=11n(2n+1)=n=112n12n+1=(1213+1415+...)=1+(112+13...)=1+n=1(1)n1n=alternatingharmonicseties1+ln(2)ϕ=1+ln(2)=ln(2e)

Question Number 135614    Answers: 0   Comments: 0

Question Number 135610    Answers: 1   Comments: 0

.... Advanced ...... Calculus.... prove that : determinant (((i :: Π_(n=0) ^∞ (1−(x^2 /((2n+1)^2 ))) =cos(((πx)/2)) ✓ )),((ii :: Π_(n=0) ^∞ (1+(x^2 /((2n+1)^2 )))= cosh(((πx)/2)) ✓✓))) .............

....Advanced......Calculus....provethat:i::n=0(1x2(2n+1)2)=cos(πx2)ii::n=0(1+x2(2n+1)2)=cosh(πx2).............

  Pg 89      Pg 90      Pg 91      Pg 92      Pg 93      Pg 94      Pg 95      Pg 96      Pg 97      Pg 98   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com