Question and Answers Forum

All Questions   Topic List

IntegrationQuestion and Answers: Page 95

Question Number 135697    Answers: 0   Comments: 0

Question Number 135693    Answers: 1   Comments: 0

Ω = ∫ ((x−1)/((x−2)(x^2 −2x+2)^2 )) dx

Ω=x1(x2)(x22x+2)2dx

Question Number 135673    Answers: 2   Comments: 0

∫ ((x^2 +1)/(x^4 +x^2 +1)) dx

x2+1x4+x2+1dx

Question Number 135646    Answers: 1   Comments: 0

∫(x+(1/2))ln(1+(1/x))−x dx=...?

(x+12)ln(1+1x)xdx=...?

Question Number 135633    Answers: 1   Comments: 0

∫(1/(x^(1/3) +1))dx=...?

1x13+1dx=...?

Question Number 135662    Answers: 0   Comments: 0

Question Number 135627    Answers: 1   Comments: 0

... nice ................. calculus ... evaluation::::: 𝛗=^(???) ∫_0 ^( (π/2)) sin(x)ln(sin(x))dx solution::::: 𝛗=^(⟨cos(x)=y⟩) (1/2)∫_0 ^( 1) ln(1−y^2 )dy =−(1/2)∫_0 ^( 1) Σ_(n=1 ) ^∞ (y^(2n) /n)=((−1)/2)Σ_(n=1) ^∞ ((1/n)∫_0 ^( 1) y^(2n) dy) =((−1)/2)Σ_(n=1) ^∞ (1/(n(2n+1)))=−Σ_(n=1) ^∞ (1/(2n)) −(1/(2n+1)) =−((1/2)−(1/3)+(1/4)−(1/5)+...) =−1+(1−(1/2)+(1/3)−...) =−1+Σ_(n=1) ^∞ (((−1)^(n−1) )/n)=_(harmonic seties) ^(alternating) −1+ln(2) ∴ 𝛗= −1+ln(2)=ln((2/e))

...nice.................calculus...evaluation:::::ϕ=???0π2sin(x)ln(sin(x))dxsolution:::::ϕ=cos(x)=y1201ln(1y2)dy=1201n=1y2nn=12n=1(1n01y2ndy)=12n=11n(2n+1)=n=112n12n+1=(1213+1415+...)=1+(112+13...)=1+n=1(1)n1n=alternatingharmonicseties1+ln(2)ϕ=1+ln(2)=ln(2e)

Question Number 135614    Answers: 0   Comments: 0

Question Number 135610    Answers: 1   Comments: 0

.... Advanced ...... Calculus.... prove that : determinant (((i :: Π_(n=0) ^∞ (1−(x^2 /((2n+1)^2 ))) =cos(((πx)/2)) ✓ )),((ii :: Π_(n=0) ^∞ (1+(x^2 /((2n+1)^2 )))= cosh(((πx)/2)) ✓✓))) .............

....Advanced......Calculus....provethat:i::n=0(1x2(2n+1)2)=cos(πx2)ii::n=0(1+x2(2n+1)2)=cosh(πx2).............

Question Number 135559    Answers: 2   Comments: 1

Question Number 135525    Answers: 0   Comments: 2

.... nice ................ calculus... evaluation of :: 𝛗=∫_0 ^( ∞) xe^(−x) (√(1−e^(−x) )) dx solution:: 1−e^(−x) =t ⇒ {_( x=−ln(1−t)) ^( e^(−x) dx=dt) 𝛗=−∫_0 ^( 1) ln(1−t).t^(1/2) dt =∫_0 ^( 1) Σ_(n=1) ^∞ (t^(n+(1/2)) /n)dt=Σ_(n=1) ^∞ (1/(n(n+(3/2)))) .... ∴ 𝛗= Σ_(n=1) ^∞ (1/(n(n+(3/2))))=Σ_(n=1) ^∞ (1/n)−(1/(n+(3/2))) .... =(2/3){γ−γ+Σ_(n=1) ^∞ ((1/n)−(1/(n+(3/2))))} .... we know that : ψ(s+1) := −γ+Σ_(n=1) ^∞ ((1/n)−(1/(n+s))) ..... ∴ 𝛗=(2/3)(γ+ψ((5/2))) .... on the oyher hand we have:: ψ(s+1)=(1/s)+ψ(s) ...... ψ((1/2))=−γ−2ln(2) ...... ψ((5/2))=(2/3)+ψ((3/2))=(2/3)+(2+ψ((1/2))) =(2/3)+2+(−γ−2ln(2)) .... ∴ ψ((3/2))=(8/3)−γ−ln(4) .... :::::: 𝛗 =(2/3)(γ+(8/3)−γ−ln(4)) .... 𝛗=(2/3)((8/3)−ln(4))=(4/3)((4/3)−ln(2)) .... ...... 𝛗= (4/3)((4/3)−ln(2))......✓✓ .... ... prepare by mr rizzy−aka... solution with detais :m.n.july.1970

....nice................calculus...evaluationof::ϕ=0xex1exdxsolution::1ex=t{x=ln(1t)exdx=dtϕ=01ln(1t).t12dt=01n=1tn+12ndt=n=11n(n+32)....ϕ=n=11n(n+32)=n=11n1n+32....=23{γγ+n=1(1n1n+32)}....weknowthat:ψ(s+1):=γ+n=1(1n1n+s).....ϕ=23(γ+ψ(52))....ontheoyherhandwehave::ψ(s+1)=1s+ψ(s)......ψ(12)=γ2ln(2)......ψ(52)=23+ψ(32)=23+(2+ψ(12))=23+2+(γ2ln(2))....ψ(32)=83γln(4)....::::::ϕ=23(γ+83γln(4))....ϕ=23(83ln(4))=43(43ln(2))..........ϕ=43(43ln(2)).............preparebymrrizzyaka...solutionwithdetais:m.n.july.1970

Question Number 135513    Answers: 1   Comments: 0

Question Number 135495    Answers: 1   Comments: 0

hi, guyz ! let′s try this : I=∫_0 ^( 1) ((sin^2 x)/(cos^3 x))dx.

hi,guyz!letstrythis:I=01sin2xcos3xdx.

Question Number 135443    Answers: 0   Comments: 0

Question Number 135389    Answers: 0   Comments: 0

let U_n =∫_(−∞) ^∞ ((cos(nx))/((x^2 −x+1)^2 ))dx calculate lim_(n→∞) e^n^2 U_n

letUn=cos(nx)(x2x+1)2dxcalculatelimnen2Un

Question Number 135382    Answers: 1   Comments: 0

find ∫_0 ^1 x^n ln(1−x^4 )dx with n integr natural

find01xnln(1x4)dxwithnintegrnatural

Question Number 135372    Answers: 0   Comments: 0

calculate ∫_0 ^∞ (dx/(((√x)+(√(1+x^2 )))^3 ))

calculate0dx(x+1+x2)3

Question Number 135368    Answers: 1   Comments: 0

calculate ∫_0 ^(+∞) ((xarctan(2x))/((x^2 +1)^2 ))dx

calculate0+xarctan(2x)(x2+1)2dx

Question Number 135361    Answers: 1   Comments: 0

f(x)=3x^2 +6x,[−1,5] find−the−average−value

f(x)=3x2+6x,[1,5]findtheaveragevalue

Question Number 135259    Answers: 2   Comments: 0

∫(x^2 +3x)cos (x)dx

(x2+3x)cos(x)dx

Question Number 135257    Answers: 2   Comments: 1

∫t^7 ln(t)dt

t7ln(t)dt

Question Number 135215    Answers: 0   Comments: 0

.....calculus preliminary.... Q: f(x)=2^x −2^(−x) ⇒ f^( −1) (x)=??? solution: y=2^x −2^(−x) ..... y=((2^(2x) −1)/2^x ) ⇒2^(2x) −y2^x −1=0 (∗) ... :: 2^x =t⇒ t>0 ...✓ .... (∗)→... t^2 −ty−1=0 .... Δ=y^2 +4>0...✓ ... t=((y+(√(y^2 +4)))/2) ...... :: 2^x =((y+(√(y^2 +4)))/2) ⇒_(both sides) ^(taking log) .... x:=log_2 (((y+(√(y^2 +4)))/2)) f^( −1) (x)=log_2 (((x+(√(x^2 +4)))/2)) ✓✓ .........................

.....calculuspreliminary....Q:f(x)=2x2xf1(x)=???solution:y=2x2x.....y=22x12x22xy2x1=0()...::2x=tt>0.......()...t2ty1=0....Δ=y2+4>0......t=y+y2+42......::2x=y+y2+42takinglogbothsides....x:=log2(y+y2+42)f1(x)=log2(x+x2+42).........................

Question Number 135174    Answers: 1   Comments: 0

Z = ∫_0 ^( π/2) arctan (sin x) dx + ∫_0 ^( π/4) arcsin (tan x) dx

Z=0π/2arctan(sinx)dx+0π/4arcsin(tanx)dx

Question Number 135231    Answers: 0   Comments: 0

∫(√((x^2 +x)^3 )) dx help me

(x2+x)3dxhelpme

Question Number 135103    Answers: 0   Comments: 1

f(x)=1+Σ_(n=2) ^∞ (((−x)^n )/n)

f(x)=1+n=2(x)nn

Question Number 135062    Answers: 1   Comments: 0

Let f(0) = a ; f(3)=0 and f ′(x)=e^x^4 what is the value ∫_0 ^( 3) x^2 f(x) dx ?

Letf(0)=a;f(3)=0andf(x)=ex4whatisthevalue03x2f(x)dx?

  Pg 90      Pg 91      Pg 92      Pg 93      Pg 94      Pg 95      Pg 96      Pg 97      Pg 98      Pg 99   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com