Question and Answers Forum |
IntegrationQuestion and Answers: Page 97 |
![]() |
hi, everybody ! with I=∫_0 ^∞ (1/(x^4 +1)) dx, prove that : 2I=∫_0 ^∞ ((x^2 +1)/(x^4 +1)) dx. |
∫⌊x⌋dx=?... |
calculus (2)..... 𝛗=∫_1 ^( 2) (((ln(((x+2)/(x+1))))/x))dx =??? |
∫(dx/((x^2 −1)(√(x^4 −1))))=? |
∫ (√(1+sec x)) dx ? |
∫ (((x^4 )^2 )/((1+x^6 )^2 )) dx =? |
∫_0 ^( 2π) (dx/(5+3sin 2x)) =? |
∫_0 ^1 ((x^3 dx)/((x−1)^3 +3x−5)) |
....calculus... prove:: 𝛗=∫_(−∞) ^( +∞) (dx/((x^2 +π^2 )cosh(x)))=(4/𝛑) −1 |
calculate f(ξ) =∫_0 ^∞ ((x sin(ξx))/(1+x^4 ))dx |
calculate c(ξ) =∫_0 ^∞ ((cos(ξx))/(1+x^4 ))dx |
....advanced calculus.... prove that :: Σ_(n=0) ^∞ ((Γ(n+(1/2))ψ(n+(1/2)))/(2^n .n!))=−(√(2π)) (γ+ln(2)).... |
.......CALCULUS...... lim _(n→∞) (n(ln(2)−Σ_(k=1) ^n (1/(n+k))))=? |
∫_0 ^( (1/2)) (√(1+(√(1−x^2 )))) dx =? |
find ∫_0 ^∞ ((cosx ch(2x))/((x^2 +x+3)^2 ))dx |
find ∫ (dx/((x+2)^2 (x^2 −x+1)^3 )) |
find ∫ ((x^2 dx)/(x^3 −2x+1)) |
let u_n =Σ_(k=1) ^n (1/(√k)) find a equivalent of u_n (n+→∞) |
calculate A_n = ∫∫_([(1/n),n[) (e^(−x^2 −y^2 ) /(√(x^2 +y^2 +3)))dxdy and lim_(n→∞) A_n |
find ∫_0 ^∞ ((xsin(2x))/((x^2 +4)^3 ))dx |
∫ (dx/((x^4 +1) ((x^4 +2))^(1/4) )) ? |
... nice calculus... find:: 𝛗=^(???) ∫_0 ^( 1) (sin(x)+sin((1/x)))(dx/x) |
....advanced calculus.... evaluate: Σ_(n=1) ^∞ (H_n /(n^2 2^(n+1) ))=?? |
...nice ......calculus... 𝛗= ∫_(0 ) ^( 1) xli_3 (x)dx=??? |
nice .....calculus... evaluate ::Σ_(n=1) ^∞ ((H_n /(n^2 +n)))=? |
Pg 92 Pg 93 Pg 94 Pg 95 Pg 96 Pg 97 Pg 98 Pg 99 Pg 100 Pg 101 |