Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 8301 by Rasheed Soomro last updated on 06/Oct/16

Is  { (ω+i)^0 , (ω+i)^1 , (ω+i)^2 , ...., (ω+i)^n  }  cyclic for any value of n?  Determine the smallest such n if it exists.  ω is a complex cuberoot of unity and  i=(√(−1))

Is{(ω+i)0,(ω+i)1,(ω+i)2,....,(ω+i)n}cyclicforanyvalueofn?Determinethesmallestsuchnifitexists.ωisacomplexcuberootofunityandi=1

Commented by 123456 last updated on 07/Oct/16

(ω+i)^n =Σ_(i=0) ^n  ((n),(i) )ω^i i^(n−i)   ω^i =ω^(i mod3)   i^(n−i) =i^(n−i mod 4)

(ω+i)n=ni=0(ni)ωiiniωi=ωimod3ini=inimod4

Answered by prakash jain last updated on 08/Oct/16

w=cos ((2π)/3)+isin ((2π)/3)  w+i=cos ((2π)/3)+i(sin ((2π)/3)+1)  ∣w+i∣=(√(cos^2 ((2π)/3)+(sin ((2π)/3)+1)^2 ))=r≠1  w+i=re^(i∅)   ∵r≠1, (w+i)^j =(w+i)^k ⇒j=k

w=cos2π3+isin2π3w+i=cos2π3+i(sin2π3+1)w+i∣=cos22π3+(sin2π3+1)2=r1w+i=reir1,(w+i)j=(w+i)kj=k

Terms of Service

Privacy Policy

Contact: info@tinkutara.com