Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 11862 by Mr Chheang Chantria last updated on 03/Apr/17

Lesson1. AM−GM ′ s inequality (Cauchy)  form : ((a_1 +a_2 +...+a_n )/n) ≥ ((a_1 a_2 ...a_n ))^(1/n)   where a_1 ,a_2 ,....,a_n >0  Equal at a_1 =a_2 =.....=a_n   e.g. 1. Given a,b,c>0, prove that         (a+b)(b+c)(c+a)≥8abc  Solu. by AM−GM          a+b ≥ 2(√(ab))       (1)          b+c ≥ 2(√(bc))        (2)          c+a ≥ 2(√(ca))       (3)   (1)×(2)×(3) ⇒ (a+b)(b+c)(c+a)≥8(√(a^2 b^2 c^2 ))=8abc  Now practice.   . Given a,b,c>0 prove that       1. a^2 +b^2 +c^2 ≥ab+bc+ca       2. (a+(1/b))(b+(1/c))(c+(1/a))≥8       3. 4(a^3 +b^3 )≥(a+b)^3        4.  9(a^3 +b^3 +c^3 )≥(a+b+c)^3   let′s try, I will post my solution for which one  that you can′t do ;)

Lesson1.AMGMsinequality(Cauchy)form:a1+a2+...+anna1a2...annwherea1,a2,....,an>0Equalata1=a2=.....=ane.g.1.Givena,b,c>0,provethat(a+b)(b+c)(c+a)8abcSolu.byAMGMa+b2ab(1)b+c2bc(2)c+a2ca(3)(1)×(2)×(3)(a+b)(b+c)(c+a)8a2b2c2=8abcNowpractice..Givena,b,c>0provethat1.a2+b2+c2ab+bc+ca2.(a+1b)(b+1c)(c+1a)83.4(a3+b3)(a+b)34.9(a3+b3+c3)(a+b+c)3letstry,Iwillpostmysolutionforwhichonethatyoucantdo;)

Answered by Joel576 last updated on 03/Apr/17

(1)  a + b ≥ 2(√(ab ))  ⇔   a^2  + b^2  ≥ 2ab  ... (i)  b + c ≥ 2(√(bc))    ⇔   b^2  + c^2  ≥ 2bc   ... (ii)  a + c ≥ 2(√(ac))   ⇔   a^2  + c^2  ≥ 2ac  ... (iii)    (i) + (ii) + (iii)  2(a^2  + b^2  + c^2 ) ≥ 2(ab + bc + ac)  ⇒ a^2  + b^2  + c^2  ≥ ab + bc + ac

(1)a+b2aba2+b22ab...(i)b+c2bcb2+c22bc...(ii)a+c2aca2+c22ac...(iii)(i)+(ii)+(iii)2(a2+b2+c2)2(ab+bc+ac)a2+b2+c2ab+bc+ac

Answered by Joel576 last updated on 03/Apr/17

(2)  (a + (1/b)) ≥ 2(√(a/b))   ... (i)  (b + (1/c)) ≥ 2(√(b/c))   ... (ii)  (c + (1/a)) ≥ 2(√(c/a))   ... (iii)    (i) . (ii) . (iii)  (a + (1/b))(b + (1/c))(c + (1/a)) ≥ 8(√1)

(2)(a+1b)2ab...(i)(b+1c)2bc...(ii)(c+1a)2ca...(iii)(i).(ii).(iii)(a+1b)(b+1c)(c+1a)81

Commented by Mr Chheang Chantria last updated on 03/Apr/17

Very nice solution

Verynicesolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com