Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 170532 by MikeH last updated on 26/May/22

Let I_n  =∫x^n e^(−x) dx, n = 0,1,2,...  (i) Show that I_n  = −x^n e^(−x) +nI_(n−1)   (ii) Show that ∫_0 ^∞ x^n e^(−x) dx = n!

LetIn=xnexdx,n=0,1,2,...(i)ShowthatIn=xnex+nIn1(ii)Showthat0xnexdx=n!

Answered by FelipeLz last updated on 26/May/22

(i)         I_n  = ∫x^n e^(−x) dx               x^n  = u ⇒ u′ = (d/dx)[x^n ] = nx^(n−1)                e^(−x)  = v^′  ⇒ v = ∫e^(−x) dx = −e^(−x)                ∫uv′dx = uv−∫u′vdx         I_n  = x^n (−e^(−x) )−∫nx^(n−1) (−e^(−x) )dx         I_n  = −x^n e^(−x) +n∫x^(n−1) e^(−x) dx         I_n  = −x^n e^(−x) +nI_(n−1)   (ii)        ∫x^n e^(−x) dx = −x^n e^(−x) +n∫x^(n−1) e^(−x) dx        ∫x^n e^(−x) dx = −x^n e^(−x) −nx^(n−1) e^(−x) +n(n−1)∫x^(n−2) e^(−x) dx        ∫x^n e^(−x) dx = −x^n e^(−x) −nx^(n−1) e^(−x) −n(n−1)x^(n−2) e^(−x) +n(n−1)(n−2)∫x^(n−3) e^(−x) dx        ∫x^n e^(−x) dx = −x^n e^(−x) −nx^(n−1) e^(−x) −n(n−1)x^(n−2) e^(−x) −n(n−1)(n−2)x^(n−3) e^(−x) +n(n−1)(n−2)(n−3)∫x^(n−4) e^(−x) dx        ⋮        ∫x^n e^(−x) dx = −e^(−x) Σ_(k=0) ^n ((n!)/((n−k)!))x^(n−k)         ∫_0 ^∞ x^n e^(−x) dx = −Σ_(k=0) ^n [((n!)/((n−k)!))∙lim_(x→∞) ((x^(n−k) /e^x ))]+Σ_(k=0) ^(n−1) [((n!)/((n−k)!))∙(0^(n−k) /e^0 )]+((n!)/e^0 )         ∫_0 ^∞ x^n e^(−x) dx = −Σ_(k=0) ^n [((n!)/((n−k)!))∙0]+Σ_(k=0) ^(n−1) [((n!)/((n−k)!))∙0]+((n!)/1) = n!

(i)In=xnexdxxn=uu=ddx[xn]=nxn1ex=vv=exdx=exuvdx=uvuvdxIn=xn(ex)nxn1(ex)dxIn=xnex+nxn1exdxIn=xnex+nIn1(ii)xnexdx=xnex+nxn1exdxxnexdx=xnexnxn1ex+n(n1)xn2exdxxnexdx=xnexnxn1exn(n1)xn2ex+n(n1)(n2)xn3exdxxnexdx=xnexnxn1exn(n1)xn2exn(n1)(n2)xn3ex+n(n1)(n2)(n3)xn4exdxxnexdx=exnk=0n!(nk)!xnk0xnexdx=nk=0[n!(nk)!limx(xnkex)]+n1k=0[n!(nk)!0nke0]+n!e00xnexdx=nk=0[n!(nk)!0]+n1k=0[n!(nk)!0]+n!1=n!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com