All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 170532 by MikeH last updated on 26/May/22
LetIn=∫xne−xdx,n=0,1,2,...(i)ShowthatIn=−xne−x+nIn−1(ii)Showthat∫0∞xne−xdx=n!
Answered by FelipeLz last updated on 26/May/22
(i)In=∫xne−xdxxn=u⇒u′=ddx[xn]=nxn−1e−x=v′⇒v=∫e−xdx=−e−x∫uv′dx=uv−∫u′vdxIn=xn(−e−x)−∫nxn−1(−e−x)dxIn=−xne−x+n∫xn−1e−xdxIn=−xne−x+nIn−1(ii)∫xne−xdx=−xne−x+n∫xn−1e−xdx∫xne−xdx=−xne−x−nxn−1e−x+n(n−1)∫xn−2e−xdx∫xne−xdx=−xne−x−nxn−1e−x−n(n−1)xn−2e−x+n(n−1)(n−2)∫xn−3e−xdx∫xne−xdx=−xne−x−nxn−1e−x−n(n−1)xn−2e−x−n(n−1)(n−2)xn−3e−x+n(n−1)(n−2)(n−3)∫xn−4e−xdx⋮∫xne−xdx=−e−x∑nk=0n!(n−k)!xn−k∫0∞xne−xdx=−∑nk=0[n!(n−k)!⋅limx→∞(xn−kex)]+∑n−1k=0[n!(n−k)!⋅0n−ke0]+n!e0∫0∞xne−xdx=−∑nk=0[n!(n−k)!⋅0]+∑n−1k=0[n!(n−k)!⋅0]+n!1=n!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com