Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 210310 by Spillover last updated on 05/Aug/24

Let a be the unique real zero of x^3 +x+1.  find the simplest possible way to write   ((18)/((a^2 +a+1)^2 ))  as polynomial expression in  a  with ratio coefficients

Letabetheuniquerealzeroofx3+x+1.findthesimplestpossiblewaytowrite18(a2+a+1)2aspolynomialexpressioninawithratiocoefficients

Commented by Frix last updated on 07/Aug/24

Do you know the answer?

Doyouknowtheanswer?

Commented by AlagaIbile last updated on 07/Aug/24

  6(a^2  + 1)^3

6(a2+1)3

Commented by Frix last updated on 08/Aug/24

((18)/((a^2 +a+1)^2 ))≈29.34  6(a^2 +1)^3 ≈18.89

18(a2+a+1)229.346(a2+1)318.89

Commented by Spillover last updated on 08/Aug/24

14a^2 −10a+16

14a210a+16

Answered by Frix last updated on 08/Aug/24

We have a^3 +a+1=0∧a∈R  ((18)/((a^2 +a+1)^2 ))=((18)/(a^4 +2a^3 +3a^2 +2a+1))=       a^3 =−(a+1) ⇒ a^4 =−a(a+1)  =((18)/(2a^3 +2a^2 +a+1))=       a^3 =−(a+1)  =((18)/(2a^2 −a−1))=       a^2 =−((a+1)/a)  =−((18a)/(a^2 +3a+2))=−((18a)/((a+1)(a+2)))=  =((18)/(a+1))−((36)/(a+2))  We know a=u^(1/3) +v^(1/3)   ω=−(1/2)+((√3)/2)i  (p/(a+q))=(p/(q+u^(1/3) +v^(1/3) ))=  =(p/(q+u^(1/3) +v^(1/3) ))×(((q+ωu^(1/3) +ω^2 v^(1/3) )(q+ω^2 u^(1/3) +ωv^(1/3) ))/((q+ωu^(1/3) +ω^2 v^(1/3) )(q+ω^2 u^(1/3) +ωv^(1/3) )))=  =((p(q^2 −(u^(1/3) +v^(1/3) )q+u^(2/3) −u^(1/3) v^(1/3) +v^(2/3) ))/(q^3 +u+v−3u^(1/3) v^(1/3) q))=       Cardano gives u, v:       a=(−(1/2)+((√(93))/(18)))^(1/3) +(−(1/2)−((√(93))/(18)))^(1/3)        u=−(1/2)+((√(93))/(18))∧v=−(1/2)−((√(93))/(18))       uv=−(1/(27)) ⇒ u+v=−1∧u^(1/3) v^(1/3) =−(1/3)  =((p(q^2 −qa+u^(2/3) +2u^(1/3) v^(1/3) +v^(2/3) −3u^(1/3) v^(1/3) ))/(q^3 +q−1))=  =((p(q^2 −qa+a^2 +1))/(q^3 +q−1))    ((18)/(a+1))−((36)/(a+2))=18(x^2 −x+2)−4(x^2 −2x+5)=  =2(7x^2 −5x+8)

Wehavea3+a+1=0aR18(a2+a+1)2=18a4+2a3+3a2+2a+1=a3=(a+1)a4=a(a+1)=182a3+2a2+a+1=a3=(a+1)=182a2a1=a2=a+1a=18aa2+3a+2=18a(a+1)(a+2)==18a+136a+2Weknowa=u13+v13ω=12+32ipa+q=pq+u13+v13==pq+u13+v13×(q+ωu13+ω2v13)(q+ω2u13+ωv13)(q+ωu13+ω2v13)(q+ω2u13+ωv13)==p(q2(u13+v13)q+u23u13v13+v23)q3+u+v3u13v13q=Cardanogivesu,v:a=(12+9318)13+(129318)13u=12+9318v=129318uv=127u+v=1u13v13=13=p(q2qa+u23+2u13v13+v233u13v13)q3+q1==p(q2qa+a2+1)q3+q118a+136a+2=18(x2x+2)4(x22x+5)==2(7x25x+8)

Answered by Spillover last updated on 08/Aug/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com