All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 21314 by Tinkutara last updated on 20/Sep/17
Letαandβbetherootofx2+px−12p2=0,p∈R.Theminimumvalueofα4+β4is
Answered by $@ty@m last updated on 21/Sep/17
α+β=−p&αβ=−12p2−−(1)(a+b)4=a4+4a3b+6a2b2+4ab3+b4⇒a4+b4=(a+b)4−4ab(a2+b2)−6(ab)2⇒a4+b4=(a+b)4−4ab{(a+b)2−2ab}−6(ab)2∴α4+β4=(−p)4−4(−12p2){p2−2×−12p2}−6(−12p2)2=p4+2p2(p2+1p2)−6×14p4=p4+2+2p4−32p4∴α4+β4=p4+2+12p4−−(2)Differentiatingbothsideswrtpddp(α4+β4)=4p3−2p5−−(3)Formaximaorminima,ddp(α4+β4)=04p3−2p5=04p8−2=0p8=12p4=12−−(4)Differentiatingbothsidesof(3)wrtpd2dp2(α4+β4)=12p2+10p6>0∴α4+β4isminimumwhenp4=12⇒(α4+β4)min.=[p4+2+12p4]p4=12=12+2+12×12=12+2+12=2+2
Commented by Tinkutara last updated on 21/Sep/17
ThankyouverymuchSir!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com