All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 196872 by York12 last updated on 02/Sep/23
LetξbeapositiveRootofx2−2023x−1DefineasequenceφisuchThatφ0=1φn+1=⌊φnξ⌋,findTheRemainderWhenφ2023isdividedbyφ2
Answered by York12 last updated on 02/Sep/23
x2−2023x−1=0∧ξisapositiverootsincetheproductofRoots=−1⇒TheotherRoot=1ξξ−1ξ=2023⇒ξ=2023+1ξ⇒φn=⌊φn−1ξ⌋=⌊φn−1×2023+φn−1×1ξ⌋2023φn−1∈Z+⇒⌊φn−1×2023+φn−1×1ξ⌋=2023φn−1+⌊φn−12023⌋Wehaveφn=⌊φn−1ξ⌋⇔φn⩽φn−1ξ<φn+1⇒φnξ⩽φn−1<φnξ+12023+1ξ,∧12023+1ξ<1⇒⌊φnξ⌋∈{φn−1,φn−1−1}⌊φnξ⌋=φn−1⇔φnξ=φn−1,butφn,φn−1∈Z+∧ξ∈Q′⇒φnξ∉Z+⇒φnξ≠φn−1⇒⌊φnξ⌋=φn−1−1⇒φn=2023φn−1+φn−2−1⇒φ2=20232⇒φ2=2023⇒φn2023=φn−1+φn−2−12023⇒φn≡φn−2−1mod(2023)⇒φ2023≡φ2021−1mod(2023)≡φ2019−1mod(2023)....≡φ1−1011mod(2023)≡1012mod(2023)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com