Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 196872 by York12 last updated on 02/Sep/23

Let ξ be a positive Root of x^2 −2023x−1  Define a sequence ϕ_i  such That ϕ_0 =1  ϕ_(n+1) =⌊ϕ_n ξ⌋, find The Remainder When ϕ_(2023 ) is divided by (√ϕ_2 )

LetξbeapositiveRootofx22023x1DefineasequenceφisuchThatφ0=1φn+1=φnξ,findTheRemainderWhenφ2023isdividedbyφ2

Answered by York12 last updated on 02/Sep/23

  x^2 −2023x−1=0 ∧ ξ is a positive root   since the product of Roots =−1  ⇒The other Root =(1/ξ)  ξ−(1/ξ)=2023⇒ξ=2023+(1/ξ)  ⇒ϕ_n =⌊ϕ_(n−1) ξ⌋=⌊ϕ_(n−1) ×2023+ϕ_(n−1) ×(1/ξ)⌋  2023ϕ_(n−1) ∈Z^+ ⇒⌊ϕ_(n−1) ×2023+ϕ_(n−1) ×(1/ξ)⌋=2023ϕ_(n−1) +⌊(ϕ_(n−1) /(2023))⌋  We have  ϕ_n =⌊ϕ_(n−1) ξ⌋⇔ϕ_n ≤ϕ_(n−1) ξ<ϕ_n +1  ⇒(ϕ_n /ξ)≤ϕ_(n−1) <(ϕ_n /ξ)+(1/(2023+(1/ξ)))     ,∧(1/(2023+(1/ξ)))<1  ⇒⌊(ϕ_n /ξ)⌋∈{ϕ_(n−1) ,ϕ_(n−1) −1}  ⌊(ϕ_n /ξ)⌋=ϕ_(n−1) ⇔(ϕ_n /ξ)=ϕ_(n−1) ,but ϕ_n ,ϕ_(n−1) ∈Z^+ ∧ξ∈Q^′   ⇒(ϕ_n /ξ)∉Z^+ ⇒(ϕ_n /ξ)≠ϕ_(n−1) ⇒⌊(ϕ_n /ξ)⌋=ϕ_(n−1) −1  ⇒ϕ_n =2023ϕ_(n−1) +ϕ_(n−2) −1  ⇒ϕ_2 =2023^2 ⇒(√ϕ_2 )=2023  ⇒(ϕ_n /(2023))=ϕ_(n−1) +((ϕ_(n−2) −1)/(2023))  ⇒ϕ_n ≡ϕ_(n−2) −1 mod(2023)  ⇒ϕ_(2023) ≡ϕ_(2021) −1 mod(2023)≡ϕ_(2019) −1 mod(2023)  ....≡ϕ_1 −1011 mod (2023)≡1012 mod(2023)

x22023x1=0ξisapositiverootsincetheproductofRoots=1TheotherRoot=1ξξ1ξ=2023ξ=2023+1ξφn=φn1ξ=φn1×2023+φn1×1ξ2023φn1Z+φn1×2023+φn1×1ξ=2023φn1+φn12023Wehaveφn=φn1ξφnφn1ξ<φn+1φnξφn1<φnξ+12023+1ξ,12023+1ξ<1φnξ{φn1,φn11}φnξ=φn1φnξ=φn1,butφn,φn1Z+ξQφnξZ+φnξφn1φnξ=φn11φn=2023φn1+φn21φ2=20232φ2=2023φn2023=φn1+φn212023φnφn21mod(2023)φ2023φ20211mod(2023)φ20191mod(2023)....φ11011mod(2023)1012mod(2023)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com