All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 75228 by ~blr237~ last updated on 08/Dec/19
LetconsiderA=limx→0(∫01(Γ(t))xdt)1xProvethatA=∫01ln(Γ(t))dtDeducethevalueofA
Commented by mind is power last updated on 08/Dec/19
ln{(∫01Γx(t)dt)1x}=g(x)=ln(∫01Γx(t)dt)x=g(x)leth(x)=ln(∫01Γx(t)dt)g(x)=h(x)x=h(x)−h(0)x−0limx→0g(x)=h′(x)∣x=0h′(x)=∫01ln{Γ(t)}.Γx(t)∫01Γx(t)dtdtx=0,giveus∫01ln(Γ(t))dt∫01ln(Γ(t))dt=∫01ln(Γ(1−t))dt⇒2A=∫01{ln(Γ(t))+ln(Γ(1−t))}dt=∫01ln(Γ(t)Γ(1−t))dtΓ(t).Γ(1−t)=πsin(πt)=∫01{ln(π)−ln(sin(πt))}dt=ln(π)−∫01ln(sin(πt))dtu=πt⇒∫01ln(sin(πt))dt=∫0πln(sin(u))duπ∫0πln(sin(u))du=2∫0π2ln(sin(u))du∫0π2ln(sin(2u))du=π2ln(2)+2∫0π2ln(sin(u))du=∫0πln(sin(w))dw2=∫0π2ln(sin(w))dw=2∫0π2ln(sin(y))dy+π2ln(2)⇒∫0π2ln(sin(w))dw=−π2ln(2)2A=ln(π)−2.−12ln(2)2A=ln(2π)⇒A=ln(2π)2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com