Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 204645 by cortano12 last updated on 24/Feb/24

  Let f : [ 1^� ∞) →R be a differentiable    function such that f(1)= (1/3) and    3∫_1 ^x  f(t) dt = x f(x)−(x^3 /3) ,x∈[1,∞)    find tbe value of f(e)

Letf:[1¯)Rbeadifferentiablefunctionsuchthatf(1)=13and3x1f(t)dt=xf(x)x33,x[1,)findtbevalueoff(e)

Commented by universe last updated on 24/Feb/24

((4e^2 )/3)?

4e23?

Answered by mr W last updated on 24/Feb/24

y=f(x)  3y=y+xy′−x^2   y′−(2/x)y=x  −2∫(dx/x)=−2ln x=ln (1/x^2 )  (1/x^2 )y=∫(x×(1/x^2 ))dx+C=ln x+C  ⇒y=x^2 (ln x+C)  (1/3)=1^2 (0+C) ⇒C=(1/3)  ⇒y=f(x)=x^2 (ln x+(1/3))  ⇒f(e)=e^2 (ln e+(1/3))=((4e^2 )/3)

y=f(x)3y=y+xyx2y2xy=x2dxx=2lnx=ln1x21x2y=(x×1x2)dx+C=lnx+Cy=x2(lnx+C)13=12(0+C)C=13y=f(x)=x2(lnx+13)f(e)=e2(lne+13)=4e23

Commented by cortano12 last updated on 25/Feb/24

yes

yes

Terms of Service

Privacy Policy

Contact: info@tinkutara.com