All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 65828 by ~ À ® @ 237 ~ last updated on 04/Aug/19
LetgotowardarationalorderofderivationPart1:What′sthatspecialfactorLetn,pandkthreeintegerdifferentofzeroWestateJn,k(p)=∫01(1−xn)p+kndxandCn(p)=∏n−1k=0Jn,k(p)1)a)CalculateC1(p)b)ProvethatJn,k(p)=1nB(1n,p+1+kn)andexplicitCn(p)intermsofnandp2)Deducethat∀n>0thereexistarealansuchas(nan)nCn(p)=1p+13)Studytheconvergenceoftheresultsuite(an)n.Thenshowthatlimn−>∞nan=1Part2:therationalorderofderivationLetf∈C1(R,R).WeconsiderI1n(f)afunctiondefinedonR+byI1n(f)(x)=an∫0xf(t)(x−t)1−1ndtandD1n(f)=(I1n(f))(1)1)a_ProvethatI1n(f)(x)=nanx1n∫01f(x(1−vn))dvthenfindD12(t)b)Showthat∀f∈C1(R,R)∀x∈R+D1n(f)(x)=I1n(f)(x)+f(0)(πx)1−1n2)∀pintegerandk∈{0,...,n−1}explicitI1n(tp+kn)intermofIn,k(p)b)Provethatforpolynomialfunctionfthen−thcompositionI1n.....I1n(f)(x)=∫0xf(t)dt,c)Deducethat∀fpolynomialthefunctiong=f−f(0)verifyD1n......D1n(g)(x)=g(x)3)Widenthattwoformulastoallfunctionthatcanbedeveloppintointegerserie4)TrytofindtherelationbetweenD1n.I1n(f),I1n.D1n(f),andf4)Showthat∀x∈R+limn−>∞I1n(f)(x)=∫0xf(t)dtpourg=f−f(0)limn−>∞D1n(g)(x)=g(x)conclusionthederivativeofthefunctionIα(f)definedonR+byIα(f)(x)=an∫0xf(t)(x−t)1n−1dtiscalledthederivativeoforderα
Commented by ~ À ® @ 237 ~ last updated on 04/Aug/19
Iα(f)(x)=an∫0xf(t)(x−t)α−1dt
Terms of Service
Privacy Policy
Contact: info@tinkutara.com