All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 74322 by naka3546 last updated on 22/Nov/19
Letk=(xy+yz+zx)(x+y+z)(x+y)(y+z)(z+x)Findtheminimumandmaximumvalueofk.
Answered by MJS last updated on 23/Nov/19
k−1=xyz(x+y)(x+z)(y+z)y=px∧z=qx(1)k−1=pq(p+1)(p+q)(q+1)ddq[pq(p+1)(p+q)(q+1)]=0p(p−q2)(p+1)(p+q)2(q+1)2=0⇒q=±pinsertin(1)k−1=p(1±p)2(p+1)ddp[p(1±p)2(p+1)]=01±p32(1∓p)3(p+1)2=0⇒p=1∧q=1(nootherrealsolution)⇒x=y=z⇒k−1=18⇒k=98whichistheabsolutemaximumtheminimumis−∞putq=1:k−1=p2(p+1)2limp→−1(p2(p+1)2)=−∞
Terms of Service
Privacy Policy
Contact: info@tinkutara.com