Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 162399 by cortano last updated on 29/Dec/21

  Let m & n be two positive numbers    greater than 1 . If lim_(p→0)  ((e^(cos (p^n )) −e)/p^m ) = (1/2)e    then (n/m)=?

Letm&nbetwopositivenumbersgreaterthan1.Iflimp0ecos(pn)epm=12ethennm=?

Commented by blackmamba last updated on 29/Dec/21

 lim_(p→0)  ((e^(cos (p^n )) −e)/p^m ) = e lim_(p→0)  ((e^(cos (p^n )−1) −1)/p^m ) = (1/2)e   lim_(p→0)  ((e^(cos (p^n )−1) −1)/(cos (p^n )−1)) ×lim_(p→0)  ((cos (p^n )−1)/p^m ) = (1/2)   [ notice that lim_(x→0)  ((e^x −1)/x) = 1 ]   [ lim_(p→0)  ((e^(cos (p^n )−1) −1)/(cos (p^n )−1)) = 1 ]    ⇔ lim_(p→0)  ((cos (p^n )−1)/p^m ) = (1/2)   ⇔ lim_(p→0)  ((−2sin^2 ((p^n /2)))/p^m ) =(1/2)   ⇔ lim_(p→0)  (((((sin ((p^n /2)))/(((p^n /2)))))^2 .((p^(2n) /4)))/p^m ) =^?  −(1/4)   2n=m ⇒(n/m)= (n/(2m)) = (1/2)

limp0ecos(pn)epm=elimp0ecos(pn)11pm=12elimp0ecos(pn)11cos(pn)1×limp0cos(pn)1pm=12[noticethatlimx0ex1x=1][limp0ecos(pn)11cos(pn)1=1]limp0cos(pn)1pm=12limp02sin2(pn2)pm=12limp0(sin(pn2)(pn2))2.(p2n4)pm=?142n=mnm=n2m=12

Answered by qaz last updated on 29/Dec/21

lim_(p→0) ((e^(cos (p^n )) −e)/p^m )  =lim_(p→0) ((e(e^(cos (p^n )−1) −1))/p^m )  =elim_(p→0) ((cos (p^n )−1)/p^m )  =elim_(p→0) ((−(1/2)p^(2n) )/p^m )  =−(1/2)e  ⇒(n/m)=(1/2)

limp0ecos(pn)epm=limp0e(ecos(pn)11)pm=elimp0cos(pn)1pm=elimp012p2npm=12enm=12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com