All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 21293 by Tinkutara last updated on 19/Sep/17
Letnbeanevenpositiveintegersuchthatn2isoddandletα0,α1,....,αn−1bethecomplexrootsofunityofordern.Provethat∏n−1k=0(a+bαk2)=(an2+bn2)2foranycomplexnumbersaandb.
Answered by revenge last updated on 24/Sep/17
xn−1=(x−α0)(x−α1)(x−α2)...(x−αn−1)Puttingx=iab,wegetin(ab)n2−1=(iab−α0)(iab−α1)...(iab−αn−1)inan2−bn2=(ia−bα0)(ia−bα1)...(ia−bαn−1)...(1)Similarlyputtingx=−iab,weget(−in)an2−bn2=(−ia−bα0)(−ia−bα1)...(−ia−bαn−1)inan2−bn2=(ia+bα0)(ia+bα1)...(ia+bαn−1)...(2)Multiplying(1)and(2),weget(inan2−bn2)2=(a+bα02)(a+bα12)...(a+bαn−12)=∏n−1k=0(a+bαk2)Sincen=2m,wheremisodd,∴i2m=−1.So,(an2+bn2)2=∏n−1k=0(a+bαk2)
Commented by Tinkutara last updated on 24/Sep/17
ThankyouverymuchSir!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com