Question and Answers Forum

All Questions   Topic List

LimitsQuestion and Answers: Page 10

Question Number 193976    Answers: 2   Comments: 0

Question Number 193874    Answers: 1   Comments: 0

Question Number 193863    Answers: 2   Comments: 0

lim_(x→0) ((1−(1/2)x^2 −cos ((x/(1−x^2 ))))/x^4 ) =?

limx0112x2cos(x1x2)x4=?

Question Number 193819    Answers: 1   Comments: 0

lim_(x→0) cos ((((Π/3)+x)/x))

limcosx0(Π3+xx)

Question Number 193803    Answers: 1   Comments: 0

lim_(x→2) (((√(11−x)) cos ((π/(x−2))))/(cot (x−2)))=?

limx211xcos(πx2)cot(x2)=?

Question Number 193596    Answers: 2   Comments: 0

Question Number 193563    Answers: 3   Comments: 0

Question Number 193540    Answers: 0   Comments: 0

Question Number 193532    Answers: 2   Comments: 0

lim_(x→2) ((1−cos πx)/((2−x)^2 )) =?

limx21cosπx(2x)2=?

Question Number 193408    Answers: 1   Comments: 0

Question Number 193328    Answers: 1   Comments: 0

f(x)= { ((((x^2 −x)/(x^2 −1)) ; x≠1)),((2x+1; x=1)) :} thene find lim_(x→1) f(x)=?

f(x)={x2xx21;x12x+1;x=1thenefindlimx1f(x)=?

Question Number 193248    Answers: 1   Comments: 0

L= lim_( x→0) (( sin(x )−arcsin(x))/(tan(x)− arctan(x)))=?

L=limx0sin(x)arcsin(x)tan(x)arctan(x)=?

Question Number 193236    Answers: 2   Comments: 0

Question Number 193117    Answers: 3   Comments: 0

lim_(x→0) (cosx)^(1/x)

limx0(cosx)1x

Question Number 192969    Answers: 2   Comments: 1

Question Number 192867    Answers: 1   Comments: 0

derivate of csc(2x) by definition

derivateofcsc(2x)bydefinition

Question Number 192846    Answers: 1   Comments: 0

lim_(h→0) ((3h)/( ((3h+x))^(1/5) −(x)^(1/5) ))=?

limh03h3h+x5x5=?

Question Number 192841    Answers: 1   Comments: 0

Question Number 192652    Answers: 2   Comments: 0

lim_(x→0) ((1−(√(cos(x))))/(1+cos((√x))))

limx01cos(x)1+cos(x)

Question Number 192651    Answers: 2   Comments: 0

lim_(x→0) ((2−(√(cos(x)))−cos(x))/x^2 )

limx02cos(x)cos(x)x2

Question Number 192650    Answers: 2   Comments: 0

lim_(x→0) ((x−sen(x))/(tan^3 (x))) without lhopital rule

limx0xsen(x)tan3(x)withoutlhopitalrule

Question Number 192646    Answers: 1   Comments: 0

lim_(x⇒3) (√((x^2 −4x+3)/(x−3))) find the limit

limx3x24x+3x3findthelimit

Question Number 192639    Answers: 2   Comments: 0

lim_(x⇒∝ ) ((3x^3 +3x^2 +1)/(5x^3 +4x^2 +x)) find the limit

lim_(x⇒∝ ) ((3x^3 +3x^2 +1)/(5x^3 +4x^2 +x)) find the limit

Question Number 192617    Answers: 2   Comments: 0

Question Number 192616    Answers: 0   Comments: 0

Question Number 192573    Answers: 0   Comments: 0

solve; lim_(x→0) x^2 tan(((sinπx)/(2x))) solution let L=lim_(x→0) x^2 tan(((sinπx)/(2x))) since sinx∼x−(x^3 /6) L=lim_(x→0) x^2 tan(((πx)/(2x))−((π^3 x^3 )/(12x))) L=lim_(x→0) x^2 tan((π/2)−((π^3 x^2 )/(12))) since tan((π/2)−x)=(1/(tanx)) L=lim_(x→0) (x^2 /(tan(((π^3 x^2 )/(12))))) L=lim_(x→0) (((π^3 x^2 )/(12))/(tan(((π^3 x^2 )/(12))))) ((12)/π^3 ) L=((12)/π^3 )lim_(x→0) (((π^3 x^2 )/(12))/(tan(((π^3 x^2 )/(12))))) since lim_(x→0) (x/(tanx))=1 L=((12)/π^3 ) ∙1=((12)/π^3 ) solved by HY a.k.a senestro

solve;limx0x2tan(sinπx2x)solutionletL=limx0x2tan(sinπx2x)sincesinxxx36L=limx0x2tan(πx2xπ3x312x)L=limx0x2tan(π2π3x212)sincetan(π2x)=1tanxL=limx0x2tan(π3x212)L=limx0π3x212tan(π3x212)12π3L=12π3limx0π3x212tan(π3x212)sincelimx0xtanx=1L=12π31=12π3solvedbyHYa.k.asenestro

  Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13      Pg 14   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com