Question and Answers Forum

All Questions   Topic List

LimitsQuestion and Answers: Page 2

Question Number 215808    Answers: 1   Comments: 0

Question Number 215051    Answers: 1   Comments: 0

lim_(n→∞) Π_(k=1) ^n ((k^2 +1)/( (√(k^2 +4))))=?

limnnk=1k2+1k2+4=?

Question Number 214900    Answers: 2   Comments: 0

determinant ()

Question Number 214712    Answers: 2   Comments: 0

x

x

Question Number 214719    Answers: 4   Comments: 0

Question Number 214645    Answers: 1   Comments: 0

Question Number 214485    Answers: 1   Comments: 0

lim_(n→∞) ((1/(2∙4))+(1/(5∙7))+...+(1/((3n−1)(3n+1))))

limn(124+157+...+1(3n1)(3n+1))

Question Number 214326    Answers: 1   Comments: 0

lim_(x→∞) (((x)^(1/4) −(x)^(1/6) )/( (x)^(1/4) +(x)^(1/6) ))=?

limxx4x6x4+x6=?

Question Number 214258    Answers: 3   Comments: 0

lim_(x→∞) ((x^6 −x^5 ))^(1/6) −((x^6 +5x^5 ))^(1/6) =?

limxx6x56x6+5x56=?

Question Number 214216    Answers: 1   Comments: 0

a_n =a_(n−1) +((x−a_(n−1) )/t) lim_(n→∞) a_n =?

an=an1+xan1tlimnan=?

Question Number 214181    Answers: 1   Comments: 0

Question Number 213992    Answers: 0   Comments: 0

Question Number 213991    Answers: 0   Comments: 0

Question Number 213744    Answers: 1   Comments: 0

Question Number 213642    Answers: 1   Comments: 0

Question Number 213548    Answers: 1   Comments: 0

0<c<1 such that the recursive sequence {a_n } defined by setting a_(1 ) = (c/2) , a_(n+1) = (1/2)(c+a_n ^2 ) for n∈ N monotonic and convergent

0<c<1suchthattherecursivesequence{an}definedbysettinga1=c2,an+1=12(c+an2)fornNmonotonicandconvergent

Question Number 213511    Answers: 4   Comments: 0

lim_(n→∞) [Σ_(r=1) ^n (1/2^r )] where [•] greatest integer finction

limn[nr=112r]where[]greatestintegerfinction

Question Number 213503    Answers: 1   Comments: 0

Question Number 213468    Answers: 1   Comments: 0

show that the sequence {a_n } defined recurssively by a_1 = (3/2) a_(n ) = (√(3a_(n−1 ) −2 )) for n≥2 converges and find its limit.

showthatthesequence{an}definedrecurssivelybya1=32an=3an12forn2convergesandfinditslimit.

Question Number 213241    Answers: 3   Comments: 0

lim_(x→0) ((sin x−tan x)/x^3 )

limx0sinxtanxx3

Question Number 213169    Answers: 1   Comments: 0

prove lim_(n→∞) ∫_0 ^1 (n/(1+n^2 x^2 ))e^x^2 dx=(π/2).

provelimn01n1+n2x2ex2dx=π2.

Question Number 213109    Answers: 3   Comments: 0

lim_(x→∞) ((√(x+(√(x+(√x)))))/( (√(x+1))))=?

limxx+x+xx+1=?

Question Number 213082    Answers: 1   Comments: 0

Question Number 213073    Answers: 1   Comments: 0

L=lim_(x→0) {(1/x^2 )tan^(−1) ((√(1+(x^2 /a^2 )))−1)}

L=limx0{1x2tan1(1+x2a21)}

Question Number 212984    Answers: 0   Comments: 0

Notation : Soit A une partie de R. On appelle indicatrice de A, note^ e χ_A , l′application x { ((1 si x ∈ A)),((0 sinon)) :}. 1. Pour k dans N^∗ notons f_k : x (cos x)^(2k) . Montrer que (f_k )_(k∈N^∗ ) converge vers χ_(πZ) . 2. Soit n un parame^ tre fixe^ dans N. Pour k dans N^∗ notons g_k : x f_k (n!πx). Montrer que (g_k )_(k∈N^∗ ) converge vers une application g^((n)) a^ de^ terminer, de^ pendante du parame^ tre n. E^ crire g^((n)) sous la forme χ_A ou^ A est une partie de R a^ de^ terminer. 3. Montrer que la suite de fonctions (g^((n)) )_(n∈N) converge vers χ_Q . 4. Soit x dans R. Calculer lim_(n→∞) (lim_(k→∞) (cos(n!πx))^(2k) ).

Notation:SoitAunepartiedeR.OnappelleindicatricedeA,notee´χA,lapplicationx{1sixA0sinon.1.PourkdansNnotonsfk:x(cosx)2k.Montrerque(fk)kNconvergeversχπZ.2.Soitnunparametre`fixe´dansN.PourkdansNnotonsgk:xfk(n!πx).Montrerque(gk)kNconvergeversuneapplicationg(n)a`determiner´,dependante´duparametre`n.Ecrire´g(n)souslaformeχAou`AestunepartiedeRa`determiner´.3.Montrerquelasuitedefonctions(g(n))nNconvergeversχQ.4.SoitxdansR.Calculerlimn(limk(cos(n!πx))2k).

Question Number 212808    Answers: 0   Comments: 0

lim_(x→∞) [(x^(.1) −x^(.9) )^(1o) −x]

limx[(x.1x.9)1ox]

Question Number 212762    Answers: 1   Comments: 1

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com