Question and Answers Forum |
LimitsQuestion and Answers: Page 9 |
any point is the function is not continous f(x)=(4x+8)^((ln45)/8) a) −8 b) −2 c) no one d) 5 |
lim_(x→0) ((x−sin x)/x^n )=¿ (n∈N^∗ ) |
lim_(x→3) (((2((√6)−(√(2x)) +(√(6−2x))))/( (√(36−4x^2 )))) ) |
![]() |
lim_(x→∞) ((√(x^2 +5x+1)) +(√(x^2 −2x+1))+(√(x^2 +3))+(√(x^2 −4x+9))−(√(16x^2 −8)) =? |
lim_(x→3^+ ) ((((√x)−(√(x−3))−(√3))/( (√(x^2 −9)))) )=? |
![]() |
![]() |
determinant ((( ⋐))) |
⋐ |
Prove that ∫^( +∞^ ) _( 0) ((1−e^(−x^2 ) )/x^2 )dx=(√𝛑) |
⊪ |
![]() |
![]() |
![]() |
^() |
f(f(x)) = ax + b 1. show that f(ax+b) = af(x) + b deduce f ′(ax + b) 2. Show that f ′(x) is a constant hence deduce f |
lim_(x→0) ((((1+tan x)/(1−tan x)) −1)/x) =? |
find the value of a for which the limit lim_(x→0) ((sin (ax)−tan^(−1) (x)−x)/(x^3 +x^4 )) is finite and then evaluate the limit |
lim_( x→ 0^( −) ) { (( x^( 2) +2cos(x) + ⌊−((tan(x))/x) ⌋)/(ax^( 4) )) } = 1 a = ? a: (1/(12)) b: −(1/2) c: 12 d: −12 |
![]() |
F_n = F_n _(−1) +F_(n−2) F_2 = F_1 =1 F_n : 1 , 1 , 2 , 3 ,5... f(x)= Σ_(n=1) ^∞ F_n x^( n) = x + x^( 2) +Σ_(n=3) ^∞ (F_(n−1) +F_(n−2) )x^( n) = x+x^2 + Σ_(n=3) ^∞ F_(n−1) x^( n) + x^( 2) f (x) = x + x^( 2) + x^( 2) f(x) +x Σ_(n=2) ^∞ F_n x^( n) = x + x^( 2) + x^( 2) f(x)−x^( 2) + xf(x) ∴ f(x)= (x/(1−x−x^( 2) )) (generating function ) (x/(1−x−x^( 2) )) =Σ_(n=1) ^∞ F_n x^( n) ⇒ (x^( 2) /(1−x−x^( 2) ))=Σ_(n=1) ^∞ F_n x^( n+1) x= (1/(10)) ⇒ ((1/(100))/(1−(1/(10))−(1/(100)))) = Σ_(n=1) ^∞ (F_n /(10^( n+1) )) ⇒ { Σ_(n=1) ^∞ (( F_n )/(10^( n+1) )) = (1/(89)) } |