Question and Answers Forum

All Questions   Topic List

LimitsQuestion and Answers: Page 9

Question Number 195033    Answers: 1   Comments: 0

any point is the function is not continous f(x)=(4x+8)^((ln45)/8) a) −8 b) −2 c) no one d) 5

anypointisthefunctionisnotcontinousf(x)=(4x+8)ln458a)8b)2c)nooned)5

Question Number 195029    Answers: 1   Comments: 0

Question Number 195021    Answers: 1   Comments: 0

lim_(x→0) ((x−sin x)/x^n )=¿ (n∈N^∗ )

limx0xsinxxn=¿(nN)

Question Number 195013    Answers: 1   Comments: 0

lim_(x→3) (((2((√6)−(√(2x)) +(√(6−2x))))/( (√(36−4x^2 )))) )

limx3(2(62x+62x)364x2)

Question Number 194968    Answers: 2   Comments: 0

Question Number 194928    Answers: 1   Comments: 0

lim_(x→∞) ((√(x^2 +5x+1)) +(√(x^2 −2x+1))+(√(x^2 +3))+(√(x^2 −4x+9))−(√(16x^2 −8)) =?

limx(x2+5x+1+x22x+1+x2+3+x24x+916x28=?

Question Number 194891    Answers: 1   Comments: 0

lim_(x→3^+ ) ((((√x)−(√(x−3))−(√3))/( (√(x^2 −9)))) )=?

limx3+(xx33x29)=?

Question Number 194879    Answers: 1   Comments: 0

Question Number 194685    Answers: 1   Comments: 0

Question Number 194640    Answers: 1   Comments: 0

Question Number 194482    Answers: 1   Comments: 0

determinant ((( ⋐)))

Question Number 194466    Answers: 2   Comments: 0

Question Number 194462    Answers: 1   Comments: 0

Prove that ∫^( +∞^ ) _( 0) ((1−e^(−x^2 ) )/x^2 )dx=(√𝛑)

Provethat0+1ex2x2dx=π

Question Number 194451    Answers: 1   Comments: 0

Question Number 194425    Answers: 1   Comments: 0

Question Number 194344    Answers: 2   Comments: 0

Question Number 194338    Answers: 2   Comments: 0

Question Number 194335    Answers: 1   Comments: 0

Question Number 194334    Answers: 0   Comments: 2

^()

Question Number 194282    Answers: 1   Comments: 0

f(f(x)) = ax + b 1. show that f(ax+b) = af(x) + b deduce f ′(ax + b) 2. Show that f ′(x) is a constant hence deduce f

f(f(x))=ax+b1.showthatf(ax+b)=af(x)+bdeducef(ax+b)2.Showthatf(x)isaconstanthencededucef

Question Number 194279    Answers: 1   Comments: 0

Question Number 194256    Answers: 2   Comments: 0

lim_(x→0) ((((1+tan x)/(1−tan x)) −1)/x) =?

limx01+tanx1tanx1x=?

Question Number 194250    Answers: 2   Comments: 0

find the value of a for which the limit lim_(x→0) ((sin (ax)−tan^(−1) (x)−x)/(x^3 +x^4 )) is finite and then evaluate the limit

findthevalueofaforwhichthelimitlimx0sin(ax)tan1(x)xx3+x4isfiniteandthenevaluatethelimit

Question Number 194185    Answers: 1   Comments: 0

lim_( x→ 0^( −) ) { (( x^( 2) +2cos(x) + ⌊−((tan(x))/x) ⌋)/(ax^( 4) )) } = 1 a = ? a: (1/(12)) b: −(1/2) c: 12 d: −12

limx0{x2+2cos(x)+tan(x)xax4}=1a=?a:112b:12c:12d:12

Question Number 194139    Answers: 1   Comments: 1

Question Number 194020    Answers: 0   Comments: 0

F_n = F_n _(−1) +F_(n−2) F_2 = F_1 =1 F_n : 1 , 1 , 2 , 3 ,5... f(x)= Σ_(n=1) ^∞ F_n x^( n) = x + x^( 2) +Σ_(n=3) ^∞ (F_(n−1) +F_(n−2) )x^( n) = x+x^2 + Σ_(n=3) ^∞ F_(n−1) x^( n) + x^( 2) f (x) = x + x^( 2) + x^( 2) f(x) +x Σ_(n=2) ^∞ F_n x^( n) = x + x^( 2) + x^( 2) f(x)−x^( 2) + xf(x) ∴ f(x)= (x/(1−x−x^( 2) )) (generating function ) (x/(1−x−x^( 2) )) =Σ_(n=1) ^∞ F_n x^( n) ⇒ (x^( 2) /(1−x−x^( 2) ))=Σ_(n=1) ^∞ F_n x^( n+1) x= (1/(10)) ⇒ ((1/(100))/(1−(1/(10))−(1/(100)))) = Σ_(n=1) ^∞ (F_n /(10^( n+1) )) ⇒ { Σ_(n=1) ^∞ (( F_n )/(10^( n+1) )) = (1/(89)) }

Fn=Fn1+Fn2F2=F1=1Fn:1,1,2,3,5...f(x)=n=1Fnxn=x+x2+n=3(Fn1+Fn2)xn=x+x2+n=3Fn1xn+x2f(x)=x+x2+x2f(x)+xn=2Fnxn=x+x2+x2f(x)x2+xf(x)f(x)=x1xx2(generatingfunction)x1xx2=n=1Fnxnx21xx2=n=1Fnxn+1x=110110011101100=n=1Fn10n+1{n=1Fn10n+1=189}

  Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com