Question and Answers Forum

All Questions   Topic List

LogarithmsQuestion and Answers: Page 12

Question Number 89124    Answers: 2   Comments: 5

Question Number 88068    Answers: 2   Comments: 3

Question Number 87773    Answers: 0   Comments: 4

^3 log (^x^2 log (^x^2 log x^4 ))> 0

3log(x2log(x2logx4))>0

Question Number 87637    Answers: 1   Comments: 0

((∣x−3∣^(x+1) ))^(1/(4 )) = ((∣x−3∣^(x−2) ))^(1/(3 ))

x3x+14=x3x23

Question Number 87194    Answers: 2   Comments: 6

find the solution of ((∣ log_2 (x)+2∣)/(x−3)) < 2

findthesolutionoflog2(x)+2x3<2

Question Number 87125    Answers: 0   Comments: 3

Question Number 86515    Answers: 0   Comments: 2

log_2 (x) + log_3 (x) = 1 x =

log2(x)+log3(x)=1x=

Question Number 86339    Answers: 1   Comments: 0

4^x +6^x =9^x

4x+6x=9x

Question Number 86337    Answers: 0   Comments: 1

[4

[4

Question Number 85915    Answers: 1   Comments: 0

3^(^(∣x∣) log 27) ≥ ((81)/x)

3xlog2781x

Question Number 85826    Answers: 1   Comments: 2

^x log (xy).^y log (xy) +^x log (x−y).^y log (x−y)=0 find x+y

xlog(xy).ylog(xy)+xlog(xy).ylog(xy)=0findx+y

Question Number 85694    Answers: 0   Comments: 1

log_(((x/(x−3)))) (7) < log_(((x/3))) (7)

log(xx3)(7)<log(x3)(7)

Question Number 85433    Answers: 1   Comments: 0

−log_(((x/6))) (((log_(10) (√(6−x)))/(log_(10) x))) > log_(10) (((∣x∣)/x))

log(x6)(log106xlog10x)>log10(xx)

Question Number 85347    Answers: 0   Comments: 1

log_(0.5) ^2 (8+2x−x^2 )−7log_2 (8+2x−x^2 )<−12

log0.52(8+2xx2)7log2(8+2xx2)<12

Question Number 84986    Answers: 1   Comments: 1

5^((x+1)^2 ) + 625 ≤ 5^(x^2 +2) + 5^(2x+3)

5(x+1)2+6255x2+2+52x+3

Question Number 84828    Answers: 0   Comments: 1

log_3 (25x^2 −4)−log_3 (x) ≤ log_3 (26x^2 +((17)/x)−10)

log3(25x24)log3(x)log3(26x2+17x10)

Question Number 84826    Answers: 0   Comments: 1

(√(x^2 −2x+2)) + log_3 (√(x^2 −2x+10)) = 2

x22x+2+log3x22x+10=2

Question Number 84674    Answers: 0   Comments: 1

((6−log_(16) (x^4 ))/(3+2log_(16) (x^2 ))) < 2

6log16(x4)3+2log16(x2)<2

Question Number 84459    Answers: 1   Comments: 2

{ ((log_(10) (x)+((log_(10) (x)+8log_(10) (y))/(log_(10) ^2 (x)+log_(10) ^2 (y)))=3)),((log_(10) (y)+((8log_(10) (x)−log_(10) (y))/(log_(10) ^2 (x)+log_(10) ^2 (y)))=0)) :} find x & y

{log10(x)+log10(x)+8log10(y)log102(x)+log102(y)=3log10(y)+8log10(x)log10(y)log102(x)+log102(y)=0findx&y

Question Number 84051    Answers: 1   Comments: 0

((log_((x−1)) (6x−1))/(((1/8)(log_3 (x^2 ))^3 −log_3 (x))(log_3 (x−2)−1))) ≥ 0

log(x1)(6x1)(18(log3(x2))3log3(x))(log3(x2)1)0

Question Number 84000    Answers: 1   Comments: 1

Question Number 83786    Answers: 2   Comments: 0

(x^2 /(log_((5−x)) (x))) ≤ (5x−4) log_x (5−x)

x2log(5x)(x)(5x4)logx(5x)

Question Number 83774    Answers: 1   Comments: 0

Given 2(√(log_3 x−1)) − log_3 x^3 +8 > 0 have the solution a ≤ x < b. what is b ?

Given2log3x1log3x3+8>0havethesolutionax<b.whatisb?

Question Number 83706    Answers: 1   Comments: 0

4^x + 10^x = 25^x x = ?

4x+10x=25xx=?

Question Number 82339    Answers: 0   Comments: 1

Question Number 82066    Answers: 0   Comments: 1

log_(3+2x−x^2 ) (((sin x+(√3)cos x)/(sin 3x))) = (1/(log_2 (3+2x−x^2 )))

log3+2xx2(sinx+3cosxsin3x)=1log2(3+2xx2)

  Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13      Pg 14      Pg 15      Pg 16   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com