Question and Answers Forum

All Questions   Topic List

LogarithmsQuestion and Answers: Page 6

Question Number 159639    Answers: 1   Comments: 0

((x−1)/(log _3 (9−3^x )−3)) ≤ 1

x1log3(93x)31

Question Number 159507    Answers: 2   Comments: 1

Question Number 159157    Answers: 1   Comments: 0

Question Number 159122    Answers: 0   Comments: 0

In order to monitor buses in a travel agency, the manager decides to monitor the number of break downs of the buses using the sequence {x_n } defined by x_(n+1) = 1.05 x_n + 4. Given that x_0 = 40. is the number of break downs by the buses from the 1^(st) of january 2000, and that for every n∈N, we denote x_n the number of breakdowns of the buses as from 1^(st) of january of the year (2000 + n) (a) Calculate x_1 , x_2 , x_3 (b) Consider the sequence {y_n } defined by y_n = x_n + 80 for all n ∈ N (i) express y_(n+1) in terms of y_n and deduce the nature of the sequence {y_n }. (ii) Express y_n in terms of n. deduce x_n in terms of n (iv) find the number of break downs that will be registered by 1^(st) january 2021.

Inordertomonitorbusesinatravelagency,themanagerdecidestomonitorthenumberofbreakdownsofthebusesusingthesequence{xn}definedbyxn+1=1.05xn+4.Giventhatx0=40.isthenumberofbreakdownsbythebusesfromthe1stofjanuary2000,andthatforeverynN,wedenotexnthenumberofbreakdownsofthebusesasfrom1stofjanuaryoftheyear(2000+n)(a)Calculatex1,x2,x3(b)Considerthesequence{yn}definedbyyn=xn+80forallnN(i)expressyn+1intermsofynanddeducethenatureofthesequence{yn}.(ii)Expressynintermsofn.deducexnintermsofn(iv)findthenumberofbreakdownsthatwillberegisteredby1stjanuary2021.

Question Number 156109    Answers: 2   Comments: 0

log _5 ((√(x−9)))−log _5 (3x^2 −12)−log _5 ((√(2x−1))) ≤ 0

log5(x9)log5(3x212)log5(2x1)0

Question Number 155992    Answers: 0   Comments: 0

(1+log _3 x).(√(log _(3x) ((x/3))^(1/3) )) ≤ 2

(1+log3x).log3xx332

Question Number 155638    Answers: 1   Comments: 2

Question Number 155583    Answers: 2   Comments: 0

Question Number 154989    Answers: 2   Comments: 0

x_1 and x_2 is root log_2 x^((1+^2 log x)) =2, the value is x_1 +x_2 = ... a. 2(1/4) b. 2(1/2) c. 4(1/4) d. 4(1/2) e. 6(1/4)

x1andx2isrootlog2x(1+2logx)=2,thevalueisx1+x2=...a.214b.212c.414d.412e.614

Question Number 154573    Answers: 2   Comments: 1

Question Number 154334    Answers: 3   Comments: 1

the n^(th) term of 1 , 2, 6, 24, 120 ........ is?

thenthtermof1,2,6,24,120........is?

Question Number 153958    Answers: 4   Comments: 0

Question Number 153959    Answers: 1   Comments: 0

Question Number 153950    Answers: 1   Comments: 0

Question Number 153840    Answers: 1   Comments: 0

log _e (x)+log _x (e)+log _(((e/x))) (x)=(5/2) x=?

loge(x)+logx(e)+log(ex)(x)=52x=?

Question Number 153681    Answers: 1   Comments: 0

24^(log _(10) (x)) −26^(log _(10) (x)) =1 x=?

24log10(x)26log10(x)=1x=?

Question Number 153109    Answers: 0   Comments: 1

∫(dx/(x^2 +2x+2(√(x^2 +2x−4))))

dxx2+2x+2x2+2x4

Question Number 152976    Answers: 0   Comments: 0

Question Number 151895    Answers: 0   Comments: 0

Question Number 150641    Answers: 2   Comments: 1

1+(√3^x )=2^x x=?

1+3x=2xx=?

Question Number 148494    Answers: 1   Comments: 0

(((3+2(√2))^(2008) )/((7+5(√2))^(1338) )) + (3−2(√2)) = log _2 (x) x=?

(3+22)2008(7+52)1338+(322)=log2(x)x=?

Question Number 148257    Answers: 2   Comments: 0

Question Number 148312    Answers: 1   Comments: 0

calculer la differentielle de y=log(x) teste: sachant que log(35)=1,54407, calculer log(3501) NB: on rappelle que (1/(log(10)))=log(e)=0,43429..

calculerladifferentielledey=log(x)teste:sachantquelog(35)=1,54407,calculerlog(3501)NB:onrappelleque1log(10)=log(e)=0,43429..

Question Number 148242    Answers: 2   Comments: 0

Question Number 147507    Answers: 1   Comments: 2

Question Number 147188    Answers: 0   Comments: 0

find the remainder when 10^(10^n ) divides 7

findtheremainderwhen1010ndivides7

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com