Question and Answers Forum

All Questions   Topic List

LogicQuestion and Answers: Page 4

Question Number 93618    Answers: 0   Comments: 1

Question Number 92687    Answers: 0   Comments: 0

In a Gregorian calendar, a year finishing with 00 is a leap year if only it′s vintage is divisible by 400. Also, the 1^(st) January 1900 was a Monday. 1\ Show that a year with the vintage finishing with 00 cannot begin on a Sunday 2\ Show that for a person born between 1900−2071, his 28 anniversary will occur on the same day of birth.

InaGregoriancalendar,ayearfinishingwith00isaleapyearifonlyitsvintageisdivisibleby400.Also,the1stJanuary1900wasaMonday.1Showthatayearwiththevintagefinishingwith00cannotbeginonaSunday2Showthatforapersonbornbetween19002071,his28anniversarywilloccuronthesamedayofbirth.

Question Number 92673    Answers: 1   Comments: 2

Show that if 3 prime numbers, all greater than 3, form an arithmetic progression then the common difference of the progression is divisible by 6.

Showthatif3primenumbers,allgreaterthan3,formanarithmeticprogressionthenthecommondifferenceoftheprogressionisdivisibleby6.

Question Number 90801    Answers: 0   Comments: 3

what are the next two number of this series 4,7,9,2,5,6,3,8 ?

whatarethenexttwonumberofthisseries4,7,9,2,5,6,3,8?

Question Number 90233    Answers: 0   Comments: 5

3,4,12,39,103,x (a) 164 (b) 170 (c) 172 (d) 228

3,4,12,39,103,x(a)164(b)170(c)172(d)228

Question Number 90200    Answers: 0   Comments: 7

26≡R_1 [37] 1 ≡R_2 [3] 2≡R_3 [5] Find R_1 , R_2 and R_3

26R1[37]1R2[3]2R3[5]FindR1,R2andR3

Question Number 88943    Answers: 0   Comments: 2

Question Number 88940    Answers: 1   Comments: 0

Question Number 88690    Answers: 1   Comments: 0

Question Number 85555    Answers: 1   Comments: 0

2x^2 +5x+7=0

2x2+5x+7=0

Question Number 79462    Answers: 1   Comments: 0

prove p⇒q and ∼q⇒∼p are logicaly equivalent with out truth table

provepqandq⇒∼parelogicalyequivalentwithouttruthtable

Question Number 78671    Answers: 1   Comments: 0

prove p⇒q and negetion of q⇒negation of p

provepqandnegetionofqnegationofp

Question Number 75255    Answers: 0   Comments: 0

Question Number 75254    Answers: 1   Comments: 0

Question Number 75257    Answers: 1   Comments: 0

Let A={2,4,6,7,8,9} B={1,3,5,6,10} and C={x:3x+6=0 or 2x+6=0}.Find a. A∪B. b. is(A∪B)∪C=A∪(B∪C)?

LetA={2,4,6,7,8,9}B={1,3,5,6,10}andC={x:3x+6=0or2x+6=0}.Finda.AB.b.is(AB)C=A(BC)?

Question Number 74246    Answers: 2   Comments: 0

Question Number 71849    Answers: 1   Comments: 0

Question Number 70742    Answers: 0   Comments: 1

Prove that f(x) = x − a cos (x) − b has at least one real root for ∀a,b ∈ R

Provethatf(x)=xacos(x)bhasatleastonerealrootfora,bR

Question Number 70168    Answers: 1   Comments: 3

Question Number 69116    Answers: 0   Comments: 0

Here are three propositions: − This sentence has exactly six words −There are two wrong propositions −The two previous sentences are correct Among that propositions ,how many are wrong? list them!

Herearethreepropositions:ThissentencehasexactlysixwordsTherearetwowrongpropositionsThetwoprevioussentencesarecorrectAmongthatpropositions,howmanyarewrong?listthem!

Question Number 68695    Answers: 1   Comments: 0

pour 1<k<n montrer que k(n+1−k)<(n+1/2)^2

pour1<k<nmontrerquek(n+1k)<(n+1/2)2

Question Number 67651    Answers: 0   Comments: 0

1)Let consider S= Σ_(n=0) ^∞ n and T=Σ_(n=0) ^∞ (−1)^(n+1) n We know that ∀ x∈]−1;1] Σ_(n=0) ^∞ (−x)^n =(1/(1+x)) , then after derivating (1/((1+x)^2 ))=Σ_(n=1) ^∞ (−1)^(n+1) nx^(n−1) for x=1 ,we get T=(1/4) Now let ascertain something T=Σ_(n=0) ^∞ (−1)^(2n+2) (2n+1) +Σ_(n=0) ^∞ (−1)^(2n+1) (2n) =Σ_(n=0) ^∞ (2n+1) −2S (•) knowing that S=Σ_(n=0) ^∞ (2n)+Σ_(n=0) ^∞ (2n+1) So Σ_(n=0) ^∞ (2n+1)= S−2S When replacing that value in (•) we get T=(S−2S )−2S If i conclude that T=−3S and finally find S=−(T/3)=−(1/(12)) where will the mistake be? 2)Let consider K=1+((2020)/(2019))+(((2020)/(2019)))^2 +(((2020)/(2019)))^3 +......+... ((2020)/(2019))K=((2020)/(2019))+(((2020)/(2019)))^2 +(((2020)/(2019)))^3 +.... K−1=((2020)/(2019))+(((2020)/(2019)))^2 +(((2020)/(2019)))^3 +... So ((2020)/(2019))K=K−1 Then K=−2019 Where is the error? 3)Let consider n an integer We have 0=n−n =n+(−n)=n+(−n)^(2×(1/2)) =n+[(−n)^2 ]^(1/2) =n+ (√n^2 ) = n+n=2n So << all integer are null : 0 is the only integer>> Where is the error? 4) let consider n an integer different of zero and f(n)=nln(n) we have (df/dn)=ln(n)+1 (•) Likewise f(n)=ln(n^n ) and we know that n^n =n×n×n×......×n (n times) So f(n)=ln(n)+ln(n)+......+ln(n) (n times) Now we have (df/dn)=(1/n)+(1/n)+....+(1/n) (n times) So (df/( dn))=1 (••) Relation (•) and (••) give ln(n)+1=1 then ln(n)=0 ⇒ n=1 << The logarithm of all n≥1 is null : There is no integer big than 1 >> Where is the error? 5) let consider x=0,999999999....... we ascertain that 10x=9,999999999...... then 10x=9+0,999999999.... So 10x=9+x finally x=1 << 0.9999999999999999 ..... is and integer >> Is there any error? 6)let consider a=((26666666666666666)/(66666666666666665)) b=((999999999999999999999995)/(199999999999999999999999)) In the way to cancel , if i just remove one common figure to the numerator and to the denominator And i find a=(2/5) and b=(5/1) Will it be wrong? if no ,explain!

1)LetconsiderS=n=0nandT=n=0(1)n+1nWeknowthatx]1;1]n=0(x)n=11+x,thenafterderivating1(1+x)2=n=1(1)n+1nxn1forx=1,wegetT=14NowletascertainsomethingT=n=0(1)2n+2(2n+1)+n=0(1)2n+1(2n)=n=0(2n+1)2S()knowingthatS=n=0(2n)+n=0(2n+1)Son=0(2n+1)=S2SWhenreplacingthatvaluein()wegetT=(S2S)2SIficoncludethatT=3SandfinallyfindS=T3=112wherewillthemistakebe?2)LetconsiderK=1+20202019+(20202019)2+(20202019)3+......+...20202019K=20202019+(20202019)2+(20202019)3+....K1=20202019+(20202019)2+(20202019)3+...So20202019K=K1ThenK=2019Whereistheerror?3)LetconsidernanintegerWehave0=nn=n+(n)=n+(n)2×12=n+[(n)2]12=n+n2=n+n=2nSo<<allintegerarenull:0istheonlyinteger>>Whereistheerror?4)letconsidernanintegerdifferentofzeroandf(n)=nln(n)wehavedfdn=ln(n)+1()Likewisef(n)=ln(nn)andweknowthatnn=n×n×n×......×n(ntimes)Sof(n)=ln(n)+ln(n)+......+ln(n)(ntimes)Nowwehavedfdn=1n+1n+....+1n(ntimes)Sodfdn=1()Relation()and()giveln(n)+1=1thenln(n)=0n=1<<Thelogarithmofalln1isnull:Thereisnointegerbigthan1>>Whereistheerror?5)letconsiderx=0,999999999.......weascertainthat10x=9,999999999......then10x=9+0,999999999....So10x=9+xfinallyx=1<<0.9999999999999999.....isandinteger>>Isthereanyerror?6)letconsidera=2666666666666666666666666666666665b=999999999999999999999995199999999999999999999999Inthewaytocancel,ifijustremoveonecommonfiguretothenumeratorandtothedenominatorAndifinda=25andb=51Willitbewrong?ifno,explain!

Question Number 65427    Answers: 0   Comments: 1

Question Number 61934    Answers: 1   Comments: 2

Answer: 0^0 =?

Answer:00=?

Question Number 60484    Answers: 1   Comments: 2

If a + b + c = 4 then find a^3 + b^3 + c^(3 ) = ?

Ifa+b+c=4thenfinda3+b3+c3=?

Question Number 55057    Answers: 0   Comments: 0

Prove that Ln(z+1)=z−(z^2 /2)+(z^3 /3)−(z^4 /4)+... for ∣z∣< 1

ProvethatLn(z+1)=zz22+z33z44+...forz∣<1

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com