Question and Answers Forum

All Questions   Topic List

Matrices and DeterminantsQuestion and Answers: Page 10

Question Number 28678    Answers: 0   Comments: 0

let give A= (((1 (α/n))),((−(α/n) 1)) ) with n ∈N^∗ and α∈R find lim_(n→+∞) A^n .

letgiveA=(1αnαn1)withnNandαRfindlimn+An.

Question Number 28261    Answers: 0   Comments: 0

let give the matrice ( 0 cosθ cos(2θ)) A= ( cosθ 0 cos(2θ) ) ( cos(θ) cos(2θ 0 ) and D_θ =det A solve inside R D_θ =0

letgivethematrice(0cosθcos(2θ))A=(cosθ0cos(2θ))(cos(θ)cos(2θ0)andDθ=detAsolveinsideRDθ=0

Question Number 28260    Answers: 0   Comments: 0

let give ( 1 1 −1) A= ( 1 1 1 ) ( −1 1 1 ) and the matrices I= ( 1 0 0 ) ( 0 1 1 ) ( 0 0 1 ) and J= ( 0 1 −1) ( 1 0 1). ( −1 1 0) 1) find J^2 and J^(−1) . 2) let put J^n = x_n I +y_n J .prove that x_(n+2 ) +x_(n+1) −2x_n =0 3) calculate J^n and A^n .

letgive(111)A=(111)(111)andthematricesI=(100)(011)(001)andJ=(011)(101).(110)1)findJ2andJ1.2)letputJn=xnI+ynJ.provethatxn+2+xn+12xn=03)calculateJnandAn.

Question Number 28259    Answers: 0   Comments: 0

let give A= ( cosθ −sinθ ) ( sinθ cosθ ) 1) calculate^t A. A .prove that A is inversible and find A^(−1) 2) find A^n for n∈ N 3) developp (A +A^(−1) )^n then prove that 2^n cos^n θ = Σ_(k=0) ^n C_n ^k (n−2k)θ and Σ_(k=0) ^n C_n ^n sin(n−2k)θ =0 .

letgiveA=(cosθsinθ)(sinθcosθ)1)calculatetA.A.provethatAisinversibleandfindA12)findAnfornN3)developp(A+A1)nthenprovethat2ncosnθ=k=0nCnk(n2k)θandk=0nCnnsin(n2k)θ=0.

Question Number 28258    Answers: 0   Comments: 1

let give A = ( 1 1 ) ( 2 −1) find e^(A ) and e^(−tA) .

letgiveA=(11)(21)findeAandetA.

Question Number 28257    Answers: 0   Comments: 0

let give ( 2 3 −3) A = ( −1 0 1) ( −1 1 0 ) find a diagoal matrice D and a inversible matrice P wich verify A = P.D.P^(−1) and calculate A^n .

letgive(233)A=(101)(110)findadiagoalmatriceDandainversiblematricePwichverifyA=P.D.P1andcalculateAn.

Question Number 28255    Answers: 0   Comments: 0

let give p=(_(1 −2) ^(1 −1) ) and D= (_(3 −6) ^(2 −2) ) calculate A= p.D.p^(−1) .

letgivep=(1211)andD=(3622)calculateA=p.D.p1.

Question Number 28256    Answers: 0   Comments: 0

let give A= _( () −1 1 1) ( 1 −1 1) find A^n for n integr. ( 1 1 −1)

letgiveA=(111)(111)findAnfornintegr.(111)

Question Number 27365    Answers: 0   Comments: 0

Question Number 27343    Answers: 1   Comments: 7

let give A=(_(2 2) ^(1 2) ) find A^n and e^A and e^(tA) . we remind that e^A = Σ_ (A^n /(n!))

letgiveA=(2212)findAnandeAandetA.weremindthateA=Ann!

Question Number 26264    Answers: 1   Comments: 0

(x/3)+2x=14

x3+2x=14

Question Number 25975    Answers: 1   Comments: 0

Question Number 25623    Answers: 1   Comments: 0

solve for A and B if 2A+B [((6 3)),((6 −2)) ] and 3A+2B [((1 0)),((0 5)) ]

solveforAandBif2A+B[6362]and3A+2B[1005]

Question Number 24152    Answers: 0   Comments: 1

Let matrice A = ((a,b),(c,d) ), and A^T = A^(−1) Find d − bc

LetmatriceA=(abcd),andAT=A1Finddbc

Question Number 23358    Answers: 0   Comments: 0

Question Number 22930    Answers: 1   Comments: 0

Question Number 22700    Answers: 0   Comments: 0

Question Number 22432    Answers: 0   Comments: 0

(((5 3)),((3 2)) )A + (((2 5)),((5 1)) ) = (((4 7)),((6 2)) ) Find ∣4A^(−1) ∣

(5332)A+(2551)=(4762)Find4A1

Question Number 22386    Answers: 0   Comments: 0

equivalent matrices are obtained by

equivalentmatricesareobtainedby

Question Number 19589    Answers: 1   Comments: 0

Let A and B is 3×3 matrix of equal number where A=symmetric matrix ....B=skew symmetric matrix and the relation... (A+B)(A−B)=(A−B)(A+B) then..the value of.. ... k (AB)^T =(−1)^k (AB) (a) −1 (c) 2 (b) 1 (d) 3

LetAandBis3×3matrixofequalnumberwhereA=symmetricmatrix....B=skewsymmetricmatrixandtherelation...(A+B)(AB)=(AB)(A+B)then..thevalueof.....k(AB)T=(1)k(AB)(a)1(c)2(b)1(d)3

Question Number 19547    Answers: 0   Comments: 2

A matrix has N rows and 2k−1 columns. Each column is filled with M ones and N−M zeros. A given row j is “cool” if and only if Σ_(i=1) ^(2k−1) a_(ji) ≥ k. Find the minimum and the maximum number of cool rows for given N, k and M.

AmatrixhasNrowsand2k1columns.EachcolumnisfilledwithMonesandNMzeros.Agivenrowjiscoolifandonlyif2k1i=1ajik.FindtheminimumandthemaximumnumberofcoolrowsforgivenN,kandM.

Question Number 17890    Answers: 0   Comments: 0

Question Number 12046    Answers: 1   Comments: 0

how much matrices of integers number A= [(a,b),(c,d) ]if A^2 +A=2I, c=0, det(A)=4

howmuchmatricesofintegersnumberA=[abcd]ifA2+A=2I,c=0,det(A)=4

Question Number 12044    Answers: 1   Comments: 0

A∈M_(n×n) A^2 =A (I+A)^(−1) =....???

AMn×nA2=A(I+A)1=....???

Question Number 11958    Answers: 0   Comments: 1

A∈M_(2016×2016) with the entries a_(ij) {_(0, if i+j≠2016) ^(1, if i+j=2016) find the determinant??

AM2016×2016withtheentriesaij{0,ifi+j20161,ifi+j=2016findthedeterminant??

Question Number 11353    Answers: 0   Comments: 0

reduce the matrix below to echelon form and then to row canonical form A = [((2 4 2 −2 5 1)),((3 6 2 2 0 4)),((4 8 2 6 −5 7)) ]

reducethematrixbelowtoechelonformandthentorowcanonicalformA=[242251362204482657]

  Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com