Question and Answers Forum

All Questions   Topic List

Matrices and DeterminantsQuestion and Answers: Page 11

Question Number 11353    Answers: 0   Comments: 0

reduce the matrix below to echelon form and then to row canonical form A = [((2 4 2 −2 5 1)),((3 6 2 2 0 4)),((4 8 2 6 −5 7)) ]

reducethematrixbelowtoechelonformandthentorowcanonicalformA=[242251362204482657]

Question Number 11035    Answers: 1   Comments: 0

A= [(1,(−1)),((−4),(−2)) ] A^(2016) =.....?

A=[1142]A2016=.....?

Question Number 11034    Answers: 0   Comments: 1

u= [(1,(−1),2) ] A= [(3,2),(1,3),(0,1) ] v= [(2,(−1)) ] uAv^t =....?

u=[112]A=[321301]v=[21]uAvt=....?

Question Number 10268    Answers: 2   Comments: 0

Question Number 10245    Answers: 1   Comments: 0

prove that determinant ((1,1,1),(x,y,z),(x^2 ,y^2 ,z^2 ))=(x−y)(y−z)(z−y)

provethat|111xyzx2y2z2|=(xy)(yz)(zy)

Question Number 10243    Answers: 0   Comments: 0

solve the eqution determinant (((x−3),1,(−1)),((−7),(x+5),(−1)),((−6),6,(x−1)))=0

solvetheeqution|x3117x+5166x1|=0

Question Number 9387    Answers: 0   Comments: 2

Question Number 9287    Answers: 2   Comments: 0

find the determinant of the matrix below determinant ((0,4,0,0,0),(0,0,0,2,0),(0,0,3,0,0),(0,0,0,0,1),(5,0,0,0,0))

findthedeterminantofthematrixbelow|0400000020003000000150000|

Question Number 9286    Answers: 1   Comments: 0

find the determinant of the matrix below determinant ((0,0,0,0,1),(0,0,0,2,0),(0,0,3,0,0),(0,4,0,0,0),(5,0,0,0,0))

findthedeterminantofthematrixbelow|0000100020003000400050000|

Question Number 9285    Answers: 1   Comments: 0

find the determinant of the matrix below [(1,4,(−3),1),(2,0,6,3),(4,(−1),2,5),(1,0,(−2),4) ]

findthedeterminantofthematrixbelow[1431206341251024]

Question Number 9271    Answers: 1   Comments: 0

Find the determinant of the matrix below. determinant (((3 1 5 3)),((4 3 8 5)),((6 2 1 7)),((8 5 8 1)))

Findthedeterminantofthematrixbelow.|3153438562178581|

Question Number 8650    Answers: 0   Comments: 3

Question Number 8647    Answers: 0   Comments: 1

Question Number 8082    Answers: 0   Comments: 0

Question Number 8080    Answers: 0   Comments: 0

Question Number 7196    Answers: 1   Comments: 0

Question Number 6856    Answers: 0   Comments: 0

Prove that the set of all m × n matrices having entries in a field is a vector space over F.

Provethatthesetofallm×nmatriceshavingentriesinafieldisavectorspaceoverF.

Question Number 6251    Answers: 1   Comments: 0

3x−2y−4z=2 3y−4z=−2 2y+6z=−1

3x2y4z=23y4z=22y+6z=1

Question Number 5963    Answers: 1   Comments: 2

for what value of k the system of equation has no solution x+2y+3z=1 2x+ky+5z=1 3x+4y+7z=1

forwhatvalueofkthesystemofequationhasnosolutionx+2y+3z=12x+ky+5z=13x+4y+7z=1

Question Number 5465    Answers: 1   Comments: 0

i

i

Question Number 4812    Answers: 0   Comments: 6

Question Number 4638    Answers: 0   Comments: 0

Let P= (((1−p_1 ),p_2 ),(p_1 ,(1−p_2 )) )= ((a_(1,1) ,a_(1,2) ),(a_(2,1) ,a_(2,2) ) ) and that P^n be the nth power of P evaluated as P^n =P×P^(n−1) ;i.e by successive pre−multiplication of P to P^2 ,P^3 ,P^4 ,... up to P^(n−1) . Show that the element of P^n in the second row and first column is a_(2,1) =((p_1 (1−(1−p_1 −p_2 )^n ))/(p_1 +p_2 )). {The columns of P^n represent probability vectors for all n∈N. Hence, a_(1,1) +a_(2,1) =1 and a_(1,2) +a_(2,2) =1 for example.}

LetP=(1p1p2p11p2)=(a1,1a1,2a2,1a2,2)andthatPnbethenthpowerofPevaluatedasPn=P×Pn1;i.ebysuccessivepremultiplicationofPtoP2,P3,P4,...uptoPn1.ShowthattheelementofPninthesecondrowandfirstcolumnisa2,1=p1(1(1p1p2)n)p1+p2.{ThecolumnsofPnrepresentprobabilityvectorsforallnN.Hence,a1,1+a2,1=1anda1,2+a2,2=1forexample.}

Question Number 4389    Answers: 0   Comments: 3

∫_(−∞) ^∞ ∫_(−∞) ^∞ (√(x^2 +y^2 ))exp(((−1)/2)(x^2 +y^2 ))dydx=?

x2+y2exp(12(x2+y2))dydx=?

Question Number 3965    Answers: 2   Comments: 1

Find det(A) where A is an n×n matrix of the form A= ((λ,1,1,…,…,…,…,1),(1,λ,1,…,…,…,…,1),(1,1,λ,…,…,…,…,1),(⋮,⋮,⋮,⋱,…,…,…,1),(⋮,⋮,⋮,⋮,⋱,…,…,1),(⋮,⋮,⋮,⋮,⋮,⋱,…,1),(⋮,⋮,⋮,⋮,⋮,⋮,⋱,1),(1,1,1,1,1,1,1,λ) ) λ=constant for leading diagonal elements 1s for all other elements.

Finddet(A)whereAisann×nmatrixoftheformA=(λ1111λ1111λ111111111111λ)λ=constantforleadingdiagonalelements1sforallotherelements.

Question Number 3566    Answers: 2   Comments: 1

Let A= ((a,b),(c,d) ). Find a condition on a,b,c,d so that A^(n+1) −A^n =nA, n∈N. A^(n+1) −A^n =nA A^n −A^(n−1) =(n−1)A A^(n−1) −A^(n−2) =(n−2)A A^(n−2) −A^(n−3) =(n−3)A ... A^4 −A^3 =3A A^3 −A^2 =2A A^2 −A=A So, A^(n+1) −A=(n+n−1+n−2+...+3+2+1)A A^(n+1) =A+((n(n+1))/2)A A^(n+1) =((n^2 +n+2)/2)A A^n =(((n−1)^2 +n+1)/2)A A^n =((n^2 −n+2)/2)A (n≥1), A= ((a,b),(c,d) ) .

LetA=(abcd).Findaconditionona,b,c,dsothatAn+1An=nA,nN.An+1An=nAAnAn1=(n1)AAn1An2=(n2)AAn2An3=(n3)A...A4A3=3AA3A2=2AA2A=ASo,An+1A=(n+n1+n2+...+3+2+1)AAn+1=A+n(n+1)2AAn+1=n2+n+22AAn=(n1)2+n+12AAn=n2n+22A(n1),A=(abcd).

Question Number 2564    Answers: 1   Comments: 0

A= [(1,2),(2,5) ],B= [(3,(−1)),(4,(+2)) ] determine A^B

A=[1225],B=[314+2]determineAB

  Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com