Question and Answers Forum

All Questions   Topic List

Matrices and DeterminantsQuestion and Answers: Page 12

Question Number 2546    Answers: 0   Comments: 4

If A and B are two matrices of suitable order does there exist definition for A^B ?

IfAandBaretwomatricesofsuitableorderdoesthereexistdefinitionforAB?

Question Number 1771    Answers: 1   Comments: 0

2x−y+2z=4 x+10y−3z=10

2xy+2z=4x+10y3z=10

Question Number 605    Answers: 3   Comments: 1

Given a matrix A ∈ M_(n × n ) ∀ k ∈ N define: A= { ((∅_n if A=∅ and k≥1)),((I_n if A≠∅_n and k≠0)),((A^(k−1) A if A≠∅_n and k≥1)) :} Prove that A^k A^r =A^(k+r) ∀ k,r ∈ N.

GivenamatrixAMn×nkNdefine:A={nifA=andk1InifAnandk0Ak1AifAnandk1ProvethatAkAr=Ak+rk,rN.

Question Number 529    Answers: 1   Comments: 0

Question Number 358    Answers: 1   Comments: 0

A= [(x,(−y)),(y,x) ] X= [(x),(y) ] Y=AX

A=[xyyx]X=[xy]Y=AX

Question Number 346    Answers: 1   Comments: 0

Γ(θ)= [((cos θ),(sin θ)),((−sin θ),(cos θ)) ] Λ(θ,t)= [((cos θ),(sinh t sin θ)),((sin θ),(cosh t cos θ)) ] ζ(θ,t)=Γ(θ)×Λ(θ,t)+Λ(θ,t)×Γ(θ) ζ(θ,0)=? det ζ(θ,0)=?

Γ(θ)=[cosθsinθsinθcosθ]Λ(θ,t)=[cosθsinhtsinθsinθcoshtcosθ]ζ(θ,t)=Γ(θ)×Λ(θ,t)+Λ(θ,t)×Γ(θ)ζ(θ,0)=?detζ(θ,0)=?

Question Number 275    Answers: 1   Comments: 0

6867865396÷678

6867865396÷678

Question Number 15    Answers: 1   Comments: 0

If A= [(( 3),(−5)),((−4),( 2)) ], show that A^2 −5A−14I=0

IfA=[3542],showthatA25A14I=0

Question Number 13    Answers: 1   Comments: 0

Expand the determnent △= determinant ((a,h,g),(h,b,f),(g,f,c))

Expandthedetermnent=|ahghbfgfc|

Question Number 11    Answers: 1   Comments: 0

Evaluate: determinant (((x^2 −x+1),(x−1)),(( x+1),(x+1)))

Evaluate:|x2x+1x1x+1x+1|

Question Number 9    Answers: 1   Comments: 0

Let A= [(( 0),(−tan(x/2))),((tan(x/2)),( 0)) ] and I is the identity matrix of order 2. Show that (I+A)=(I−A)∙ [((cos x),(−sin x)),((sin x),( cos x)) ].

LetA=[0tanx2tanx20]andIistheidentitymatrixoforder2.Showthat(I+A)=(IA)[cosxsinxsinxcosx].

Question Number 7    Answers: 1   Comments: 0

If A= [(2,1,3),(4,1,0) ]and B= [(1,(−1)),(0,2),(5,0) ], verify that (AB)′=B′A′

IfA=[213410]andB=[110250],verifythat(AB)=BA

  Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com