Question and Answers Forum |
Matrices and DeterminantsQuestion and Answers: Page 12 |
If A and B are two matrices of suitable order does there exist definition for A^B ? |
2x−y+2z=4 x+10y−3z=10 |
Given a matrix A ∈ M_(n × n ) ∀ k ∈ N define: A= { ((∅_n if A=∅ and k≥1)),((I_n if A≠∅_n and k≠0)),((A^(k−1) A if A≠∅_n and k≥1)) :} Prove that A^k A^r =A^(k+r) ∀ k,r ∈ N. |
A= [(x,(−y)),(y,x) ] X= [(x),(y) ] Y=AX |
Γ(θ)= [((cos θ),(sin θ)),((−sin θ),(cos θ)) ] Λ(θ,t)= [((cos θ),(sinh t sin θ)),((sin θ),(cosh t cos θ)) ] ζ(θ,t)=Γ(θ)×Λ(θ,t)+Λ(θ,t)×Γ(θ) ζ(θ,0)=? det ζ(θ,0)=? |
6867865396÷678 |
If A= [(( 3),(−5)),((−4),( 2)) ], show that A^2 −5A−14I=0 |
Expand the determnent △= determinant ((a,h,g),(h,b,f),(g,f,c)) |
Evaluate: determinant (((x^2 −x+1),(x−1)),(( x+1),(x+1))) |
Let A= [(( 0),(−tan(x/2))),((tan(x/2)),( 0)) ] and I is the identity matrix of order 2. Show that (I+A)=(I−A)∙ [((cos x),(−sin x)),((sin x),( cos x)) ]. |
If A= [(2,1,3),(4,1,0) ]and B= [(1,(−1)),(0,2),(5,0) ], verify that (AB)′=B′A′ |