Question and Answers Forum |
Matrices and DeterminantsQuestion and Answers: Page 2 |
If ,A ∈ M_(n×n) , A^( 2) = A ,1≠ k ∈R. Find ( I − kA )^( −1) = ? |
![]() |
Prove that ((2t−1)/(lnt−ln(1−t)))=∫^( 1) _( 0) t^x (1−t)^(1−x) dx and ∫^( 1) _( 0) ((2t−1)/(lnt−ln(1−t)))dt = (π/2)∫^( 1) _( 0) ((x(1−x))/(sin(πx)))dx |
Calculer ∫^( +∞) _( 0) (dt/((e^t −e^(−t) )^2 +a^2 )) |
1/ Montrer que ∫^( +∞) _( 0) (((1−x^2 )^(2p−1) )/(1−x^(4p) ))dx=((2^(2p−3) /p))π[1+2Σ_(k=1) ^(p−1) cos^(2p−1) (((kπ)/(2p)))] 2/ En de^ duire ∫^( 1) _( 0) (((1−x^2 )^(2p−1) )/(1−x^(4p) ))dx |
(3/(x−3))+(5/(x−5))+(7/(x−17))+((19)/(x−19))=x^2 −11x−4 |
If A= (((a b c)),((b c a)),((c a b)) ) and a,b,c >0 such that abc=1 and A^T .A=I find a^3 +b^3 +c^3 −3abc . |
![]() |
![]() |
![]() |
a ball is thrown vertically upward from a point 0.5m above the ground with speed u = 7m/s find the height reached above ground g = 10m/s^2 |
A linear transformation E, of the x−y plane is defined as E:(x, y) → (2x+y, 2x+3y) Find the equation of the line that remains invariant under the transformation. |
![]() |
determine eigen values and eigen vectors for each λ . and verify Ax=λx A= [(((√3)/2),(−(1/2))),((1/2),( ((√3)/2))) ] |
find the rank of the matrix A and B by following row operation: A= [(1,2,3,(−1)),((−2),(−1),(−3),(−1)),(1,0,1,( 1)),(0,1,1,(−1)) ] B= [(( 1),( 2),(−1),( 4)),(( 2),( 4),( 3),( 5)),((−1),(−2),( 6),(−7)) ] |
find the value of cofficent μ in the following system from the determinat: 2x_1 +μx_2 +x_3 =0 (μ−1)x_1 −x_2 +2x_3 =0 4x_1 +x^2 +4x^3 =0 |
determine eigenvalues and digonalize by row operation [(4,(−9),6,(12)),(9,(−1),4,6),(2,(−11),8,(16)),((−1),( 3),0,(−1)) ] |
A= [(a,b,c),((−2),3,6),(0,(−2),5) ]and B= [(1,2,4),(0,3,9),((−1),2,2) ] A×B= [((−1),3,(−1)),((−8),d,(31)),((−5),4,e) ]find the missing value |
∫_0 ^( 1) ∫_0 ^( 1) ((cos^(−1) (xy)sin^(−1) (xy))/(ln(xy)))dxdy |
25^x − 4^x = 9^x fimd x |
Find number of skew symmetric matrices of order 3×3 in which all non diagonal elements are different and belong to the set {−9,−8,−7,...,7,8,9}. |
![]() |
![]() |
![]() |
Find matrix ∣A∣A^(-1) given that matrix A= (((√2),(-1),1,( 0)),(4,3,2,(-1)),(0,2,3,( 1)),(1,(-1),0,( 1)) ) using row operations |
Given that matrix B= { (( (√3))),((-(√5))) :} {: (( (√2))),(( (√7))) } find B^(-1) using row operation |