Question and Answers Forum

All Questions   Topic List

Matrices and DeterminantsQuestion and Answers: Page 3

Question Number 175110    Answers: 2   Comments: 3

Prove that determinant ((1,1,1),(a,b,c),(a^2 ,b^2 ,c^2 ))= (a−b)(b−c)(c−a)

Provethat|111abca2b2c2|=(ab)(bc)(ca)

Question Number 175050    Answers: 0   Comments: 0

Question Number 174765    Answers: 0   Comments: 0

Question Number 172350    Answers: 0   Comments: 0

Question Number 172005    Answers: 2   Comments: 0

find x: (log_(10) x)^2 −log_(10) x=0

findx:(log10x)2log10x=0

Question Number 171441    Answers: 0   Comments: 1

I_n = −((2n)/(2n + 1)) I_(n−1) I_0 = 1 Show that I_n = (((−4)^n (n!)^2 )/((2n+1)!))

In=2n2n+1In1I0=1ShowthatIn=(4)n(n!)2(2n+1)!

Question Number 171064    Answers: 2   Comments: 0

When A^(−1) = [(3,1),(8,4) ] find the A=? ,∣A^(−1) ∣∙A=?

WhenA1=[3184]findtheA=?,A1A=?

Question Number 170022    Answers: 0   Comments: 0

2. [((1 2)),((2 −1)) ] Soln: [((1 2)),((2 −1)) ]= [((1 0)),((0 1)) ].A ⇒ [((1 2)),((0 −5)) ]= [(( 1 0)),((−2 1)) ].A [R_2 →R_2 −2R_1 ] ⇒ [((1 2)),((0 1)) ]= [(( 1 0)),(((2/5) −(1/5))) ].A [R_2 →(−(1/5))R_2 ] ⇒ [((1 0)),((0 1)) ]= [(((1/5) (2/5))),(((2/5) −(1/5))) ].A [R_1 →R_1 −2R_2 ] ∴A^(−1) =(1/5) [((1 2)),((2 −1)) ]

2.[1221]Soln:[1221]=[1001].A[1205]=[1021].A[R2R22R1][1201]=[102515].A[R2(15)R2][1001]=[15252515].A[R1R12R2]A1=15[1221]

Question Number 168339    Answers: 0   Comments: 0

A point in rectangular coordinates (x,y,z) can be represented in spherical coordinates (r,θ,ϕ) by: x = r sin θ sin ϕ, y = sin θ sin ϕ, z = sin ϕ, 0 ≤ θ ≤ 2π , 0 ≤ ϕ ≤ π (a) Calculate the Jacobian of the transformation ((∂(x,y,z))/(∂(r,θ,ϕ))) (b) Calculate the volume of the region delimited by the sphere: S = {x,y,z ∈R^3 , x^2 +y^2 +z^2 ≤ R^2 , R>0}

Apointinrectangularcoordinates(x,y,z)canberepresentedinsphericalcoordinates(r,θ,φ)by:x=rsinθsinφ,y=sinθsinφ,z=sinφ,0θ2π,0φπ(a)CalculatetheJacobianofthetransformation(x,y,z)(r,θ,φ)(b)Calculatethevolumeoftheregiondelimitedbythesphere:S={x,y,zR3,x2+y2+z2R2,R>0}

Question Number 167956    Answers: 0   Comments: 0

Question Number 167183    Answers: 5   Comments: 1

Question Number 166377    Answers: 1   Comments: 0

Given A= ((((1/2) (1/2))),(( a b)) ) . If A^3 = A^2 then 2a−3b=?

GivenA=(1212ab).IfA3=A2then2a3b=?

Question Number 165650    Answers: 0   Comments: 0

Question Number 164134    Answers: 1   Comments: 0

Question Number 164133    Answers: 1   Comments: 0

Question Number 161429    Answers: 0   Comments: 1

help me ! { ((x+3y+z=2)),((−3x+4y+2z=3)),((−2x+7y+3z=5)) :} Gauss Method...

helpme!{x+3y+z=23x+4y+2z=32x+7y+3z=5GaussMethod...

Question Number 159222    Answers: 1   Comments: 1

find an explicit formula for the sequence (2/3), (4/5), (8/9), ((16)/(17)), ((32)/(33)), ...

findanexplicitformulaforthesequence23,45,89,1617,3233,...

Question Number 159009    Answers: 0   Comments: 0

Question Number 156610    Answers: 2   Comments: 0

If A and B are invertible matrices,then: (AB)^(−1) =B^(−1) A^(−1) ≠ A^(−1) B^(−1) proove.

IfAandBareinvertiblematrices,then:(AB)1=B1A1A1B1proove.

Question Number 156248    Answers: 1   Comments: 0

Question Number 155302    Answers: 0   Comments: 0

Question Number 153486    Answers: 1   Comments: 0

Question Number 153227    Answers: 2   Comments: 0

let D= [((v 5)),(((1/3) m)) ] find number (v) and (m) such that D^2 =5I (I=identity matrix)

letD=[v513m]findnumber(v)and(m)suchthatD2=5I(I=identitymatrix)

Question Number 152545    Answers: 1   Comments: 0

Question Number 151028    Answers: 1   Comments: 0

Question Number 150392    Answers: 0   Comments: 0

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com